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a b s t r a c t

We take the point of view that building a one-way bridge
from experimental data to mathematical models instead of the
other way around avoids running into controversies resulting
from attaching meaning to the symbols used in the latter. In
particular, we show that adopting this view offers new perspec-
tives for constructing mathematical models for and interpreting
the results of Einstein–Podolsky–Rosen–Bohm experiments. We
first prove new Bell-type inequalities constraining the values of
the four correlations obtained by performing Einstein–Podolsky–
Rosen–Bohm experiments under four different conditions. The
proof is ‘‘model-free’’ in the sense that it does not refer to any
mathematical model that one imagines to have produced the
data. The constraints only depend on the number of quadru-
ples obtained by reshuffling the data in the four data sets
without changing the values of the correlations. These new
inequalities reduce to model-free versions of the well-known
Bell-type inequalities if the maximum fraction of quadruples
is equal to one. Being model-free, a violation of the latter by
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experimental data implies that not all the data in the four
data sets can be reshuffled to form quadruples. Furthermore,
being model-free inequalities, a violation of the latter by ex-
perimental data only implies that any mathematical model
assumed to produce this data does not apply. Starting from the
data obtained by performing Einstein–Podolsky–Rosen–Bohm
experiments, we construct instead of postulate mathematical
models that describe the main features of these data. The
mathematical framework of plausible reasoning is applied to
reproducible and robust data, yielding without using any concept
of quantum theory, the expression of the correlation for a system
of two spin-1/2 objects in the singlet state. Next, we apply
Bell’s theorem to the Stern–Gerlach experiment and demonstrate
how the requirement of separability leads to the quantum-
theoretical description of the averages and correlations ob-
tained from an Einstein–Podolsky–Rosen–Bohm experiment. We
analyze the data of an Einstein–Podolsky–Rosen–Bohm experi-
ment and debunk the popular statement that Einstein–Podolsky–
Rosen–Bohm experiments have vindicated quantum theory. We
argue that it is not quantum theory but the processing of
data from EPRB experiments that should be questioned. We
perform Einstein–Podolsky–Rosen–Bohm experiments on a su-
perconducting quantum information processor to show that the
event-by-event generation of discrete data can yield results that
are in good agreement with the quantum-theoretical description
of the Einstein–Podolsky–Rosen–Bohm thought experiment. We
demonstrate that a stochastic and a subquantum model can also
produce data that are in excellent agreement with the quantum-
theoretical description of the Einstein–Podolsky–Rosen–Bohm
thought experiment.

© 2023 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

All experiments which yield results in numerical form generate a finite amount of discrete data
epresented by (ratios of) finite integers. Obviously, also algorithms running on digital computers
enerate discrete data (a finite number of bits). The same can be said of analog simulations by
eans of e.g., electronic circuits. In practice, the data gathered from these experiments also comes

n the form of a finite amount of sampled, discrete data, even though we often imagine them as
ontinuous.
In this paper, discrete data are considered to be immutable facts, free of personal judgment.

f course, there first has to be a consensus among individuals that the discrete data are indeed
mmutable facts. Once this consensus has been established these immutable facts constitute the
‘reality’’, the ‘‘real world’’ that we refer to in this paper. By adopting this very narrow definition of
‘reality’’, there is little room left for philosophical arguments about the nature of reality, realism
tc. [1]. In brief, experimental or computer generated data are considered as immutable facts,
onstituting the ‘‘reality’’. At the risk of overemphasizing the importance of taking this narrow
iew of ‘‘reality’’, it is necessary to carefully distinguish the definition of reality as immutable facts
dopted in this paper for the aim of analyzing specific scientific questions from the question ‘‘what
s reality really?’’, which goes far beyond the scope of this paper.

We take the common view that a mathematical model (MM), that is a model formulated in the
anguage of mathematics, of (the process that generates) the data should provide a description of
he discrete data that is more concise than simply tabulating all the data. The MM should describe
2
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Fig. 1. Graphical representation of the view adopted in this paper.

he data or the relevant features thereof, either in terms of discrete data itself or, as is more common
n physics, by providing a function of one or more variables that fits well to the data. If possible, a
M should also describe relations between features extracted from the data.
We distinguish between two classes of MMs. The first class (M1C) contains all MMs which

enerate discrete data in a finite number of steps. MMs of this class can be represented by a
erminating algorithm running on a digital computer. Any such algorithm is an instance of a
omputer model (CM), the acronym that will be used to refer to the first class of MMs. On the
ther hand, as digital computers are physical devices on which numerical experiments are being
arried out, CMs can also be viewed as metaphors for real experiments in which all conditions
re known and under control (assuming the digital computer is operating flawlessly which, in
ractice, is easily verified by repeating the numerical experiment) [2]. Furthermore, the logical
peration of the electronic digital computers we are all used to can equally well be realized by
mechanical machine, albeit at great cost and great loss of efficiency. Thus, any CM executed on a
igital computer has, at least in principle, a macroscopic, mechanical equivalent. The second class
M2C), symbolically represented in Fig. 1 by the green rectangle with rounded edges contains all
Ms that do not belong to M1C.
Most of the fundamental models in theoretical physics are based on the notions of the space–

ime continuum and real numbers. After suitable discretization, the equations of classical physics
or Newtonian mechanics, Maxwell’s electrodynamics, special relativity, etc., produce discrete data
hen these equations are solved numerically on a digital computer. Although the discretization
rocedure is not unique, different procedures all share the property that they yield the same
ontinuum model. Thus, as indicated in Fig. 1, the relation between the MM and CM is bidirectional.
The transition from any probabilistic or quantum-theoretical model to discrete data requires

he use of an algorithm that is external to both these models. This transition is unidirectional.
onceptually, these models are separated from the discrete data by a gap that takes the proportion
f an abyss. A probabilistic model is defined by its real-valued probability (density) measure on a
robability space [3,4]. It describes the probability (density) distribution of events [3,4]. Probability
heory does not contain a recipe/algorithm to generate the events. Adding such an algorithm, which
o make contact to the realm of discrete data is necessarily finite and terminating (e.g., a pseudo-
andom number generator), fundamentally changes the mathematical structure of the probabilistic
odel, turning it into an event-by-event simulation on a digital computer, a CM.
3
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In quantum theory, the state of the system is described by a vector (or density matrix) in an
bstract Hilbert space [5,6]. Quantum theory plus any of the interpretations allegedly explaining
he existence of the discrete, definite events encountered in real life faces a similar abyss. Also,
his M2C does not contain a recipe/algorithm to generate the events but, exactly as in the case of
robabilistic models, can be turned into CM by appealing to Born’s rule, a key postulate of quantum
heory. The existence of the named abyss proves itself through the fact that more than 100 years
fter their conception, there seem to be irreconcilable differences in opinion about the interpretation
f probability [7] and quantum theory [8,9]. The conundrum of not being able to deduce within
he context of the latter theory that, in general, each measurement yields a definite outcome [8,9]
as, for a Curie–Weiss model of the measurement device, been shown to be amenable to detailed
nalysis without invoking elusive concepts such as the wave function collapse [10–12].
From the foregoing, it is clear that discretizing differential equations or using of pseudo-random

umber generators, maps M2Cs onto CMs. This category of CMs is ‘‘inspired’’ by M2Cs. In contrast,
here are CMs that are not based, also do not have any relation to, one of the M2Cs that are used
o describe physical phenomena. They are defined by specifying a set of rules, an algorithm. A
rominent example of such a CM is a pseudo-random number generator. Its algorithm consists
f a set of arithmetic operations, designed to create the illusion that the numbers being generated
re unpredictable. More generally, discrete event simulations belong to this category of CMs.
In many but not all cases, the discrete data generated by laboratory experiments, computer

xperiments on a digital computer and classical physics model may directly be confronted with
ach other, as indicated by the red rectangle containing the three discrete data boxes in Fig. 1. For
nstance, we can compare the observed trajectory of a satellite with the numerical solution of the
lassical equation of motion for that object.
In general, the comparison between experimental data and discrete data obtained from model

alculations is through averages, correlations, etc., that is through quantities that capture the salient
eatures of the discrete data. The applicability of the models is established a posteriori by comparing
heir features with those of the laboratory experiment or, if the latter is not available, by comparing
eatures among models.

If the comparison is considered to be successful (by some necessarily subjective criterion), as
ndicated by the smiley, the MM has been validated. If the MM does not describe the discrete data,
t is not ‘‘wrong’’ (assuming it is mathematically sound). Then, we have two options. First, following
ommon practice of all subfields of physics, we should try to include into the MM elements that are
f relevance to the real experiment but have been left out in the construction of the MM. Second,
ike in the case of classical mechanics failing to describe relativistic mechanics, one has to come up
ith a new MM, a task that is much more daunting than the first one.
With one exception, all the arrows in Fig. 1 are unidirectional. Therefore, if the comparison

etween experimental data and a MM (e.g., a probabilistic or a quantum model) is found to be
nsatisfactory (by whatever criterion), it is a logical fallacy to conclude that one of the premises
nderlying the MM must be ‘‘wrong’’. The logically correct conclusion is that the predictions of the
M in terms of averages, correlations, etc. do not agree. Of course, logically unjustified conclusions
ay sometimes provide inspiration to construct other MMs that eliminate some or all of the
ifferences in their predictions.
Nevertheless, once the model has been validated, the assumption that the phenomenon, which

as the subject of the laboratory experiment, shares the same properties as the model is expressing
belief, a logical fallacy of false analogy.
A recurring theme of this paper is that there is no direct relation between any of the properties of

Ms, MMs (all contained in the green area of Fig. 1), and those of natural phenomena or laboratory
xperiments. In this view, there exists an impenetrable barrier between discrete data produced by
computer) experiments and MMs designed to capture the salient features of these data, see Fig. 1.
ndeed, there is no reason why valid ‘‘theorems’’ derived from a MM should have a bearing on
‘reality’’ represented by discrete data. The idea that they would have a bearing reminds us of the
‘mind projection fallacy’’, the assertion that one’s own thoughts and sensations are realities existing
n the world in which we live [7, p. 22].
4
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1.1. Some further thoughts on relations between ‘‘model’’ (theory) and ‘‘reality’’

To the best of our knowledge, a view similar to the ‘‘mind projection fallacy’’ was first clearly
xpressed in Heinrich Hertz’ last work ‘‘Die Prinzipien der Mechanik in neuem Zusammenhange
argestellt (1894)’’ [13]. In the introduction, Hertz discussed the relation between object and ob-
erver, subject and object, nature and culture, theory and practice. In the introduction he wrote [14]
‘We form for ourselves mental pictures or symbols of external objects; and the form which we give
hem is such that the necessary consequences of the pictures in thought are always the pictures
f the necessary consequences in nature of the things pictured’’. Hertz’s position represents a
ignificant departure from Galileo’s view that the ‘‘book of nature is written in geometric symbols’’,
position which does not assume that the mathematical symbols used in physical theories have
eaning outside these theories. The first lines of Ref. [15] read ‘‘Any serious consideration of
physical theory must take into account the distinction between the objective reality, which

s independent of any theory, and the physical concepts with which the theory operates. These
oncepts are intended to correspond with the objective reality, and by means of these concepts
e picture this reality to ourselves’’, which seem to be in concert with Hertz’ view. An in-depth
iscussion of the relevance of Hertz’ view to the foundations of quantum theory can be found in
ef. [16].
More generally, the essential part of the whole philosophy, from Ancient Greece to modern times,

s related to the problem of the adequacy of our worldview and its relation to ‘‘reality’’ (whatever
hat ‘‘reality’’ means). Of course, it is far beyond both the scope of the paper and the expertise of
he authors to discuss this issue in its generality, but several remarks seem to be not only useful
ut even necessary.

• There is a strong tendency to identify our description of reality, represented in a mathematical
way, with reality. Usually, this tendency is associated with the philosophy of Plato and his
followers but one can go even farther in the past, e.g., to Pythagoras. Importantly, this view
is still alive and quite popular among physicists and mathematicians, the philosophical views
of Heisenberg probably being the most striking example [17]. There are many varieties of this
worldview but, roughly speaking, mathematics is identified with the deepest level of ‘‘reality’’.
Our physical world is supposed to be a shadow of this true, or supreme, reality.

• One advantage of this approach is obvious: ‘‘the unreasonable effectiveness of mathematics
in natural sciences’’ [18] is no longer a problem. Strangely enough, counterexamples to this
statement such as the famous Banach–Tarski paradox [19] are routinely ignored. In our
physical world, we cannot cut a ball into a finite number of pieces and reconnect them into a
ball twice the size of the original ball. This observation alone should force us to reconsider the
idea that the connection between the world of mathematical concepts and the physical world
are related in trivial way.

• Importantly enough, even accepting Plato’s main concept does not imply, in any way, that this
divine mathematics, this supreme reality, should coincide with our human mathematics. The
latter may be merely a projection, and the procedure of projecting could change dramatically
its character. There is some analogy with Bohr’s complementarity principle: an electron is
neither wave nor particle but these concepts naturally arise with our attempts to describe the
results of interaction of invisible micro objects like the electron with macroscopic measuring
devices [20]. We cannot go deeper into this analogy here but should mention that there is
also the complementarity of continuity and discreteness which seems to be an unavoidable
property of such a projection [20]. This is directly related to the fact that, as mentioned in the
beginning of the introduction, the results of physical experiments have finite precision and are
represented by discrete numbers.

• The previous observations imply that even if we take the idealistic positions in spirit of Plato
or Hegel philosophies, one needs to distinguish carefully between superior reality, whatever
rational and even mathematical it may be by itself, and its reflection in one’s mind, unavoidably
restricted by our own everyday experience, by our language reflecting this experience (‘‘The
limits of my language mean the limits of my world’’ [21]) and by physiology of our bodies and

brains.

5
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• The Hertzian view on scientific theories as images of reality seems to be careful enough in this
respect. The rest depends on our general world view. For example, if we believe in evolution
and in the origin of our mind as a result of this evolution, these images should be correct, at
least to some significant degree. Indeed, our survival, as well as the survival of our ancestors,
heavily depends on them. This world view already enforces some quite strong restrictions on
the structure of both our mind and physical reality [22].

• However, the previous statement should not be misunderstood. What is required from the
internal image (world view) is its ability to make reasonably accurate predictions of the events
in the external world. The power of this ability is directly related to the requirement of the
robustness of the description. The latter lies at the base of our logical inference approach to
the foundations of quantum theory [23]. Also, the compactness of the representation of the
information about the external world is crucially important to limit resources necessary to
operate with this information. In our separation of conditions principle we use this idea to
construct the formal framework of quantum theory [24].

2. Structure of the paper

In this paper, we demonstrate by means of the application to Einstein–Podolsky–Rosen–Bohm
EPRB) experiments and appeal to Bell’s theorem that building a one-way bridge from discrete
ata to a MM eliminates all the problems of interpreting the results of EPRB experiments. The

reason for this is simple. Starting from the discrete data, immutable facts, instead of from imaginary
MMs which usually support very rich mathematical structures, there is no room for going astray in
interpretations.

We start by describing the discrete data obtained by both EPRB thought and laboratory ex-
eriments, see Sections 3–5, and in Section 6, we present a new inequality for the correlations
omputed from these data. The proof of this inequality does not depend on the existence of a
M for the process that (one imagines having) produced the data. This inequality is ‘‘model free’’,

nvolving discrete data only. Correlations obtained from EPRB experiments can never violate this
nequality. This inequality contains the Bell–CHSH inequality, valid for discrete data, as a special
ase. A violation of the Bell–CHSH inequality by discrete data only indicates that not all the data
ontributing to the correlations can be reshuffled to form quadruples, see Appendix A for the
efinition of ‘‘quadruples’’. It follows that any interpretation of a violation of the latter in terms of
n imagined physical process generating the data is a logical fallacy of the kind mentioned earlier. A
hort note focusing on a derivation of this inequality for the simplest case can be found in Ref. [25].
The model-free inequality puts a constraint on correlations computed from the discrete data but

oes not contribute to the theoretical modeling of the EPRB experiment. In this paper we system-
tically scrutinize various alternatives for constructing such models starting from the assumed or
magined features of the discrete data of an EPRB experiment.

We start by constructing, as opposed to postulating, the quantum-theoretical description of the
PRB experiment. First, in Section 7 we apply the elementary theory of plausible reasoning to data
btained from reproducible and robust EPRB experiments and derive, without using any concept of
uantum theory, the expressions for the averages and the correlation for a system of two spin-1/2
bjects in the singlet state. This approach builds a bridge between the discrete data produced by
xperiment and a theoretical model but does not provide insight into the process that led to the
ata.
Second, in Section 8, we demonstrate how the requirement of separability of the condition

nder which the EPRB experiment is carried out leads to the quantum-theoretical description of
he averages and correlations obtained from an EPRB experiment. Remarkably, a crucial step in
his construction is the application of Bell’s theorem to the Stern–Gerlach experiment. Section 8.1
ontains a discussion about the efficiency of quantum theory in terms of compressing data and
ection 8.2 presents a proof of a no-go theorem for quantum theory of two spins-1/2 objects. We
lso identify the point at which interpretations of mathematical symbols that appear in MMs lose
ontact with the reality, represented by discrete data.
6
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In Section 9 we confront the data of an EPRB experiment [26] with the quantum-theoretical
redictions for two spin-1/2 objects in the singlet state, debunking the popular statement that EPRB
xperiments confirm these predictions [27–31]. We also argue that it is not quantum theory but
ather the practical realization of the EPRB experiments that should be questioned.

Section 10 presents results of EPRB-like experiments performed by means of a superconducting
uantum information processor and show that this event-by-event generation of discrete data yields
esults that are in good agreement with the quantum-theoretical description of the EPRB thought
xperiment.
Section 11 reviews non-quantum models (NQMs) that cannot (Sections 11.1 and 11.2) and can

Sections 11.5 and 11.6) reproduce the averages and correlations of two spin-1/2 objects in the
inglet or product state. Additional examples can be found in Appendix L. We also provide an
lternative proof of Fine’s theorem [32,33] and discuss its implications in the light of the central
heme of this paper.

In Section 12, we summarize the key ideas and results of our work.
In the main text, we only address the main points. Technicalities of proofs and examples

llustrating the main points are given in the appendices.
Finally, a remark about the notation used throughout the paper: discrete data generated by a real

computer) experiments, e.g., AC,n, are labeled by a subscript C specifying the condition under which
he data has been generated and a subscript to label the instance (n) of the data item. The data most
ikely change if the condition C changes or the experiment is repeated. Note that this notation does
ot refer to any particular MM. Objects that belong to the domain of MMs are regarded as functions
f the arguments that appear in parentheses, e.g., A(a, λ).

. Einstein–Podolsky–Rosen–Bohm thought experiment

The Einstein–Podolsky–Rosen thought experiment was introduced to question the completeness
f quantum theory [15], ‘‘completeness’’ being defined in Ref. [15]. Bohm proposed a modified
ersion that employs the spins-1/2 objects instead of coordinates and momenta of a two-particle
ystem [34]. This modified version, which we refer to as the Einstein–Podolsky–Rosen–Bohm (EPRB)
xperiment, has been the subject of many experiments [26,35–42] and theoretical studies [1,31–
3,43–87].
The essence of the EPRB thought experiment is shown and described in Fig. 2. Performing the

PRB thought experiment under the first condition defined by the directions (a, c) yields the data
et of pairs

D1 = {(A1,n, B1,n) | A1,n, B1,n = ±1 ; n = 1, . . . ,N}, (1)

here N is the number of pairs emitted by the source. In this paper, we reserve the symbol A (B) for
epresenting discrete data (if it carries subscripts denoting conditions or a model function thereof
f it has arguments enclosed in parentheses) originating from stations 1 (2) of the EPRB experiment
hown in Fig. 2.
Repeating the EPRB thought experiment under the three conditions (a, d), (b, c), and (b, d) yields

he corresponding data sets D2, D3 and D4. We repeat once more that according to our notational
onvention, the subscripts represent the condition under which the experiment has been performed.
The data sets Ds for s = 1, 2, 3, 4 are imagined exhibiting the following features:

1. There is no relation between the numerical values of As,n and As,n′ if n ̸= n′ and similarly for Bs,n
and Bs,n′ . This implies that, based on the knowledge of all As,n̸=m and all Bs,n̸=m, it is impossible
to predict As,m or Bs,m with certainty. Similarly, it is impossible to predict with certainty As,m
or Bs,m knowing all As′,n or Bs′,n for all s′ ̸= s and all n.

Inspired by the quantum-theoretical description of the EPRB thought experiment (see Ap-
pendix M), the data sets Ds for s = 1, 2, 3, 4 are imagined exhibiting the following additional
features:
7
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Fig. 2. Conceptual representation of the Einstein–Podolsky–Rosen thought experiment [15] in the modified form proposed
y Bohm [34]. A source produces pairs of particles. The particles of each pair carry opposite magnetic moments implying
hat there is a correlation between the two magnetic moments of each pair leaving the source. The magnetic field gradients
f the Stern–Gerlach magnets (cylinders) with their uniform magnetic field component along the directions of the unit
ectors a and c divert each incoming particle into one of the two, spatially separated directions labeled by +1 and −1.
he pair (a, c) determines the conditions, to be denoted by the subscript ‘‘1’’, under which the data (A1,n, B1,n) is collected.
he values of A1,n and B1,n correspond to the labels of the directions in which the particles have been diverted. The result
f this experiment is the set of data pairs D1 = {(A1,1, B1,1), . . . , (A1,N , B1,N )} where N denotes the total number of pairs
mitted by the source. Note that according to our notational convention, the subscript ‘‘1’’ stands for the condition under
hich the experiment has been performed.

2. The averages and the correlation defined by

E(1)
s =

1
N

N∑
n=1

As,n, E(2)
s =

1
N

N∑
n=1

Bs,n, E(12)
s =

1
N

N∑
n=1

As,nBs,n, (2)

are invariant under simultaneous rotation of the Stern–Gerlach magnets, that is they can
only depend on the directions of Stern–Gerlach magnets through the scalar product of their
respective direction vectors.

3. The averages E(1)
s ≈ 0, E(2)

s ≈ 0, and correlations E(12)
1 ≈ −a · c, E(12)

2 ≈ −a · d, E(12)
3 ≈ −b · c,

and E(12)
4 ≈ −b · d.

4. From 3, it follows that the data shows perfect anticorrelation (correlation), that is As,n = −Bs,n
(As,n = +Bs,n) for all n = 1, . . . ,N , if the directions of the Stern–Gerlach magnets are the same
(opposite).

4. Einstein–Podolsky–Rosen–Bohm laboratory experiment

An EPRB laboratory experiment is, of course, more complicated than the thought experiment. In
Fig. 3, we show a schematic of the EPRB experiment with photons performed by Weihs et al. [26,88].
In experiments with photons, the photon polarization plays the role of the spin-1/2 object in the
EPRB thought experiment depicted in Fig. 2 (see Section 7.1). Prominent features of this particular
experiment are that for each event that triggers the emission of photons by the source, binary
random numbers are used to select one of the two EOM settings and that all the time tags and
detector clicks are stored in files which can be analyzed long after the experiment has finished (as
we do in this paper, see Section 9).

A key element, not present in the thought experiment, is a procedure to identify pairs of particles.
Many EPRB experiments [26,35–37,88–90], use the t ’s, the time tags, for coincidence counting. More
recent experiments use thresholds on the voltages generated by the transition edge detectors to
identify pairs [41,42]. In essence, in all cases, the identification procedure removes (a lot) of data
from the raw data sets [26,41,42,88–90]. As indicated in Fig. 3, this procedure yields data sets of
different size N , N , N , and N . In the following, to simplify the discussion and notation somewhat,
1 2 3 4

8
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Fig. 3. Schematic diagram of an EPRB experiment with photons performed by Weihs et al. [26,88]. A source emits pairs
of photons in spatially separated directions. Photons arriving at station 1 pass through an electro-optic modulator (EOM)
which rotates the polarization of the photon that passes through it by an angle corresponding to the voltage applied to
that EOM. The latter is controlled by a binary variable r1,n , which is chosen at random [26,88]. The two different angles
to choose from in station 1 (2) are denoted by two-dimensional vectors a (b) and c (d). As the photon leaves the EOM, a
polarizing beam splitter directs the photon to either detector D+1 or detector D−1 . Depending of the detection efficiency
(about 5% [26]), one of these detectors fires, producing either a signal x1,n = +1 or a signal x1,n = −1 and a time stamp
t1,n . Each triple (x1,n, t1,n, r1,n) is written to a file. The same holds for photons arriving at station 2. After all data has been
written to the two files, that is when the experiment has finished, a time window W is used to remove all data that
oes not satisfy a time-coincidence criterion [26,88]. The remaining data is organized in four data sets, corresponding to
he four different values of the pairs of random numbers (r1,n, r2,n). Note that the values of the A’s (B’s) that appear in
ay D1 (D3). and those that appears in say D2 may be different, even though they may have been recorded for the same
ngle a (b). The four sets of discrete data D1 , D2 , D3 , and D4 are the result of the experiment for the particular value
f the time-coincidence window W .

e truncate the four data sets by keeping only the first N = min(N1,N2,N3,N4) data pairs. The four
data sets then read (see also Fig. 3)

Ds = {(As,n, Bs,n) | As,n, Bs,n = ±1 ; n = 1, . . . ,N}, (3)

where s = 1, 2, 3, 4 labels the different runs of the experiment.
The identification process is irrelevant for the material presented in this paper, except for

Section 9 and also for Sections 11.5 and 11.6 in which we briefly discuss a probabilistic M2C
and an event-by-event, cause-and-effect CM which describe, respectively generate the raw data
{xi,n, ti,n, ri,n} for i = 1, 2 (see Fig. 3) and can reproduce the averages and the correlation obtained
from the quantum-theoretical description of the EPRB experiment. As indicated in Fig. 3, the data
that are subject to further analysis are only those that remain after the identification process has
played its part.
9
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4.1. What is the main issue?

The following is an attempt to explain the main issue without taking recourse to mathematics.
herefore, some aspects which are important for a precise formulation of the issue have been left
ut. They are mentioned in the sections that follow.
Referring to Fig. 2, imagine that the particle of a pair traveling to the left (right) is very close

o the leftmost (rightmost) magnet but has not yet interacted with it (we assume that there is no
aster-than-light communication between the particles). Also imagine that the distance between
he two Stern–Gerlach magnets is so large that light emitted by one particle will not arrive at the
ther particle before both particles complete their journeys by arriving at one of the detectors.
nder these conditions, changing the direction of the left (right) magnet cannot have an effect on
he particle passing through the right (left) magnet. Thus, under these circumstances, knowledge
f A1,n’s (B1,n’s) value cannot affect B1,n’s (A1,n’s) value. The picture of what happens to the particle
oing left is completely separated from the picture of what happens to the particle going right.
Next, consider the case in which the directions of the two magnets are either parallel or

ntiparallel, that is c = ±a. Then, according to the features of the data listed above,

1. the values of the A1,n and B1,n for the nth pair, are unpredictable, randomly taking values ±1.
2. The value of the product A1,nB1,n = ∓1 for all n = 1, . . . ,N pairs, depending on the direction

c = ±a of the magnets.

hus, even though the value of, say A1,n is random, once it is known, because of the assumed perfect
anti)correlation, see the above feature 2, the value of B1,n is known too, even before it is actually
ecorded.

In 1964, Bell [43] presented a simple model that (i) describes the two-particle system in terms
f two separated one-particle systems and (ii) provides a picture of the observations that we have
ust described. The two one-particle systems are separated in the sense that what happens to a
article only depends on the direction of the Stern–Gerlach magnet with which it interacts and on
ome variables that it shares with the other particle, the initial values of which are determined at
he time the particles leave the source.

In the same paper [43], Bell also proved his theorem (see Section 11.1 for a precise statement of
he theorem) stating that there does not exist a description in terms of two separated one-particle
ystems that yields the correlation (−a · c) of two spin-1/2 objects in a singlet state. Thus, although
ell’s simple model can reproduce the main features listed in points 1 and 2 above, it fails to agree
ith the quantum-theoretical description of the EPRB thought experiment.
The key question is then ‘‘what is the outcome of an EPRB laboratory experiment?’’ Instead of

enerating data for many directions of the Stern–Gerlach magnets and comparing the correlation
ith the quantum-theoretical result −a · c, it is easier to demonstrate a violation of the so-
alled Bell–CHSH inequality (see Section 6), an inequality that Bell used to prove his theorem. The
rgument is that any two-particle system which can be separated into two one-particle systems
s envisaged by Bell cannot violate a Bell–CHSH inequality. Therefore, the argument goes, if the
xperimental data violates the Bell–CHSH inequality, the ‘‘separability principle’’, which asserts that
ny two spatially separated systems possess their own separate real states [91], or in Bell’s words,
hat ‘‘mutually distant systems are independent of one another’’ [92], must be abandoned.

The main issue is that the logic of this argument is seriously flawed. The Bell–CHSH inequality
olds for some MMs but certainly not for experimental data (see Section 6). Thus, a violation of the
ell–CHSH inequality by experimental data can only imply that this particular MM does not apply
o the experiment. Moreover, as shown in Section 9, the analysis of data obtained from an EPRB
aboratory experiment shows that (i) under suitable conditions, this experiment yields −a·c to good
pproximation and (ii) by changing these conditions a little, that correlation becomes compatible
ith the results of a separable, Bell-like model. From the viewpoint portrayed by Fig. 1, none of
he apparent conflicts is surprising. They all result from the idea that ‘‘theorems’’ derived in the
ontext of a MM have a bearing on the ‘‘reality’’ represented by experimental data. As mentioned
n Section 1, if a MM leads to the conclusion that there is a conflict with the ‘‘reality’’ represented
y experimental data, the appropriate course of action is to revise/extend/abandon the MM, not
mmediately call into question the elementary concepts on which our picture-building of natural

henomena is based.

10
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5. Description of discrete data: statistics

As the A’s and B’s with different indices n and different indices s are assumed to be unrelated,
he order in which data items appear is irrelevant for the characterization of the data set. In this
ase, the (relative) frequencies by which a pair of values (x, y) (x, y = ±1) appears in the data set
q. (1) are sufficient to characterize this data set. Formally, for the data collected under condition
= 1, 2, 3, 4, these frequencies are defined by

fs(x, y) =
1
N

N∑
n=1

δx,As,nδy,Bs,n =
1
4N

N∑
n=1

(1 + xAs,n)(1 + yBs,n), x, y = ±1, (4)

where the Kronecker delta δi,j takes the value one if the variables i and j are equal and is zero
otherwise. By construction 0 ≤ fs(x, y) ≤ 1 and

∑
x,y=±1 fs(x, y) = 1. Frequencies, such as the one

efined by Eq. (4), are discrete-valued functions of the variables x and y which take discrete values
nd are denoted as such, using the subscript ‘‘s’’ to indicate that the data has been collected under
he conditions represented by the symbol ‘‘s’’. Frequencies belong to the domain of discrete data,
ot to M2C.
As it is clear from Eq. (4), computing a frequency is a form of data compression. In this

articular case, computing the frequencies Eq. (4) compresses the whole data set Eq. (1) to three,
iscrete-valued numbers (three instead of four because of the normalization).
From Eq. (4) it follows immediately that the averages and the correlation and their relation to

he frequencies Eq. (4) are given by

E(1)
s =

1
N

N∑
n=1

As,n =

∑
x,y=±1

xfs(x, y), (5a)

E(2)
s =

1
N

N∑
n=1

Bs,n =

∑
x,y=±1

yfs(x, y), (5b)

E(12)
s =

1
N

N∑
n=1

As,nBs,n =

∑
x,y=±1

xyfs(x, y), (5c)

fs(x, y) =
1 + x E(1)

s + y E(2)
s + xy E(12)

s

4
=

1 + x E(1)
s

2
1 + y E(2)

s

2
+

xy
(
E(12)
s − E(1)

s E(2)
s

)
4

(5d)

howing that the frequencies Eq. (4) or the expectations E(1)
s , E(2)

s , and E(12)
s are equivalent charac-

terizations of the data in the set Eq. (3).
Later, we need the notion of ‘‘independence’’ and this is a good place to discuss this notion.

The two variables x and y are said to be independent if the frequency fs(x, y) can be written in the
factorized form fs(x, y) = f (1)s (x|a, c)f (2)s (y|a, c) where f (i)s (z) = (1 + z E(i)

s )/2 for i = 1, 2 are the
marginal frequency distributions of fs(x, y). Eq. (5d) shows that x and y are independent if and only
if the correlation E(12)

s − E(1)
s E(2)

s = 0. In general, independence implies vanishing correlation [4] but
for two-valued variables the vanishing of correlations also implies independence.

Keeping the condition fixed, different data sets Ds that yield the same frequencies fs(x, y) are
equivalent in the sense that they yield the same values for the averages and the correlation.
Repeating an EPRB laboratory experiment with the same conditions is expected (see Section 7)
to yield numerical values of the frequencies fs(x, y) that are subject to statistical fluctuations which
decrease as the number of pairs N increases.

6. Model-free inequality for correlations computed from discrete data

Motivated by the work of Bell [93] and Clauser et al. [94,95], many EPRB experiments [26,36,
37,39–42] focus on demonstrating a violation of the Bell–CHSH inequality [93,94]. To this end, one
11
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collects experimental data for four, well-chosen conditions denoted by 1, 2, 3 and 4, and computes
the corresponding correlations according to Eq. (5c).

In Appendix B, we present a rigorous proof that for any (real or computer or thought) experiment
roducing discrete data in the range [−1,+1], the correlations computed from the four data sets
q. (3) must satisfy the model-free inequalities⏐⏐⏐E(12)

1d ∓ E(12)
2

⏐⏐⏐+ ⏐⏐⏐E(12)
3 ± E(12)

4

⏐⏐⏐ ≤ 4 − 2∆, (6)

here 0 ≤ ∆ ≤ 1 is the maximum fraction of quadruples that can be found by rearrang-
ng/reshuffling the data in D1, D2, D3, and D4 without affecting the value of the correlations E(12)

1d ,
(12)
2 , E(12)

3 , and E(12)
4 . For a detailed description of the reshuffling procedure and the definition

of quadruples, see Appendix B. We emphasize that inequality Eq. (6) holds for discrete data
in the range [−1,+1], independent of how the data was generated and/or processed and, most
mportantly independent of any MM. In essence, the upper bound 4−2∆ in Eq. (6) results from the
act that for every quadruple that we can create by reshuffling data pairs in each of the four data
ets, the contribution to the expression on the left hand side of Eq. (6) is limited in magnitude by
wo, not by four.

The proof of Eq. (6) requires that the A’s and B’s that appear in the expressions of the correlations
take discrete values (ratios of finite integers) in the interval [−1,+1]. However, as mentioned in
Fig. 2, the data produced by an EPRB experiment is most conveniently represented by variables A
or B taking values +1 or −1 only. In other words, Eq. (6) covers both the case of data produced by
EPRB experiments and general discrete data in the range [−1,+1].

It is expedient to introduce the Bell–CHSH function

SCHSH = max
(i,j,k,l)∈π4

⏐⏐⏐E(12)
i − E(12)

j + E(12)
k + E(12)

l

⏐⏐⏐ , (7)

where π4 denotes the set of all permutations of (1, 2, 3, 4). By application of the triangle inequality,
it directly follows from Eq. (6) that for any (real or computer or thought) experiment producing
discrete data in the range [−1,+1],

SCHSH ≤ 4 − 2∆ . (8)

The symbol ∆ in Eqs. (6)–(8) quantifies the structure in terms of quadruples exhibited by data
D1, D2, D3, and D4. If ∆ = 0, it is impossible to find a reshuffling that yields even one quadruple.
If ∆ = 1, the four sets can be reshuffled such that they can be viewed as being generated from N
uadruples. Then we recover the ‘‘model-free’’ Bell–CHSH inequality for discrete data

SCHSH ≤ 2, (9)

usually derived within the context of a MM (see Appendix I) [93–96].
In Appendix B.5, we briefly discuss the extended EPRB experiment (EEPRB) [56,97] which always

generates data for which ∆ = 1. Perhaps somewhat counterintuitive is that ∆ ≲ 1 if all the
’s and B’s take independent random values ±1, see Appendix B. In the case of interest, namely
(12)
1 = −a ·c, E(12)

2 = −a ·d, E(12)
3 = −b ·c, and E(12)

4 = −b ·d, the maximum value over all directions
a, b, c, d of the left-hand side of Eq. (6) is 2

√
2 ≈ 2.83 [98] (see Appendix M.4), implying that the

maximum fraction of quadruples which can be found in the data D1, D2, D3, and D4 must satisfy
∆ ≤ 2−

√
2 ≈ 0.59. In Appendix B, we present simulation results obtained by generating four times

one million independent pairs according to the quantum-theoretical distribution of two spin-1/2
objects in the singlet state and obtain |E(12)

1 − E(12)
2 | + |E(12)

3 + E(12)
4 | ≈ 2.83 and 4 − 2∆ ≈ 2.83,

trongly suggesting that the value of quantum-theoretical upper bound 2
√
2 is reflected in the

raction of quadruples that one can find by reshuffling the data.
Suppose that the (post processed) data of an EPRB experiment yields SCHSH > 2, that is the

ata violates the Bell–CHSH inequality Eq. (9). From Eq. (8), it follows that ∆ ≤ 2− SCHSH/2 < 1
f SCHSH > 2. Therefore, if SCHSH > 2 not all the data in D1, D2, D3, and D4 can be reshuffled such
that they originate from quadruples only. Indeed, the data produced by these experiments have
to comply with Eq. (6), and certainly not with the Bell–CHSH inequality. The reason is that the
12
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Bell–CHSH inequality is obtained from Eq. (6) in the exceptional case ∆ = 1 in which all data
an be extracted from N quadruples.
In other words, all EPRB experiments which have been performed and may be performed

n the future and which only focus on demonstrating a violation of Eq. (9) merely provide
vidence that not all contributions to the correlations can be reshuffled to form quadruples
yielding ∆ < 1). These violations do not provide a clue about the nature of the physical
rocesses that produce the data.
More specifically, Eq. (6) holds for discrete data, rational numbers in the range [−1,+1],

rrespective of how the data sets Eq. (3) were obtained. Inequality (6) shows that correlations of
iscrete data violate the Bell–CHSH inequality Eq. (9) only if not all the pairs of data in Eq. (3)
an be reshuffled to create quadruples. The proofs of Eqs. (6) and (9) reflect a certain structure in
he data. They do not refer to notions such as ‘‘locality’’, ‘‘realism’’, ‘‘non-invasive measurements’’,
‘action at a distance’’, ‘‘free will’’, ‘‘superdeterminism’’, ‘‘complementarity’’, etc. Logically speaking,
violation of Eq. (9) by experimental data cannot be used to argue about the relevance of one or
ore of these notions used as motivation to formulate mathematical models of the process that
enerated the experimental data.
A violation of the original (non model-free) Bell–CHSH inequality S ≤ 2 may lead to a variety of

onclusions about certain properties of a MM for which this inequality has been derived. However,
rojecting these logically correct conclusions about the MM, obtained within the context of that
M, to the domain of EPRB laboratory experiments requires some care, as we now discuss.
The first step in this projection is to feed real-world, discrete data (rational numbers in the range

−1,+1]) into the original Bell–CHSH inequality S ≤ 2 derived, not for discrete data as we did by
onsidering the case ∆ = 1 in Eq. (8), but rather in the context of some mathematical model, and
o conclude that this inequality is violated. Considering the discrete data for the correlations as
iven, it may indeed be tempting to plug these rational numbers into an expression obtained from
ome mathematical model. However, then it is no longer clear what a violation actually means
n terms of the mathematical model because the latter (possibly by the help of pseudo-random
umber generators) may not be able to produce these experimental data at all. The second step is
o conclude from this violation that the mathematical model cannot produce the numerical values
f the correlations, implying that the mathematical model simply does not apply and has to be
eplaced by a more adequate one or that one or more premises underlying the mathematical model
ust be wrong. In the latter case, the final step is to project at least one of these wrong premises

o properties of the world around us.
The key question is then to what extent the premises or properties of a mathematical model

an be transferred to those of the world around us. Based on the rigorous analysis presented in
his paper, the authors’ point of view is that in the case of laboratory EPRB experiments, they
annot.
Using only Eq. (6), the logically and mathematically correct conclusion one can draw on the

asis of the correlations computed from these data obtained under conditions (1, 2, 3, 4) (listed in
ection 3) is that a fraction of the experimental data Eq. (3) can be reshuffled to create quadruples.
owever, Eq. (6) and the conclusions drawn from it do not significantly contribute to the modeling
f the EPRB experiment as such. To this end, we need to develop MMs that describe the change
f the data as the conditions change. In the sections that follow, we explore various ways of
onstructing MMs which reproduce the features of the experimental data mentioned in Section 3.

. Modeling data: logical inference

In the exact sciences, an elementary requirement for the outcomes of an experiment to be
onsidered meaningful is that they are reproducible. Obviously, in the case of the EPRB experiment,
he (hypothesized) unpredictable nature of the individual events renders the data set Eq. (1) itself
rreproducible. However, repeating the experiment and analyzing the resulting data sets, there is
he possibility that the frequencies Eq. (4) computed from the different sets are reproducible (within
easonable statistical errors). Or, if it is difficult to repeat the experiment, dividing the data set into
ubsets and comparing the frequencies obtained from the different subsets may also lead to the

onclusion that the data is reproducible.

13
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In this paper, we assume that the frequencies Eq. (4) produced by the EPRB experiment are
eproducible. But even if the frequencies Eq. (4) are reproducible, they may still show an erratic
ependence on a or c which can only be captured in tabular form. The latter has very little
escriptive power. Thus, in order for an experiment to yield frequencies that allow for a description
hat goes beyond simply tabulating all values, the frequencies not only have to be reproducible but
lso have to be robust, meaning that the frequencies should smoothly change if the conditions under
hich the data was taken changes a little [23]. This is the key idea of the logical inference approach

or deriving, not postulating, several of the basic equations of quantum physics [23,99–102]. We
riefly recall the main elements of the logical inference approach as it has been applied to the EPRB
xperiment [23].
The first step of the logical inference approach is to assign a plausibility [103] 0 ≤ p(x, y|a, c) ≤ 1

or observing a data pair (x = ±1, y = ±1) under the conditions (a, c). As explained in Appendix C,
lausibility and (mathematical) probability are distinct concepts but for the present, practical
urposes, the difference is not important. Recall that frequencies are discrete data whereas the
oncept of probability belongs to M2C.
The second step is to use the Cox–Jaynes approach [7,104,105], the notion of robust, reproducible

iscrete data and symmetry arguments to derive, not postulate, p(x, y|a, c). The most general form
f a function p(x, y|a, c) of variables that only take values ±1 reads

p(x, y|a, c) =
1 + x E1(a, c) + y E2(a, c) + xy E12(a, c)

4
, (10)

see also Eq. (5d). Specializing to the case E1(a, c) = E2(a, c) = 0 and accounting for rotational
nvariance by imposing E12(a, c) = E12(a · c), we have [23]

p(x, y|a, c) =
1 + x y E12(a · c)

4
=

1 + x y E12(θ )
4

= p(x, y|θ ), (11)

where 0 ≤ θ = arccos(a·c) ≤ π is the angle between the unit vectors a and c. Using the assumption
hat (xn, yn) and (xm, ym) are independent if n ̸= m, we can express the plausibility to observe several
airs in terms of the plausibility Eq. (11) for a single pair [23].
Expressing the notions of reproducible and robust statistical experiments mathematically leads

o the requirements (i) that frequencies should be used to assign values to the plausibilities, thereby
liminating their subjective character [23] and (ii) that, in the case at hand, the Fisher information

IF(θ ) =

∑
x,y=±1

1
p(x, y|θ )

(
∂p(x, y|θ )

∂θ

)2

=
1

1 − E2
12(θ )

(
∂E12(θ )
∂θ

)2

> 0, (12)

should be independent of θ , positive and minimal [23]. In Appendix D, we solve this optimization
problem. From Eq. (D.3) it is obvious that, discarding the irrelevant solution n = 0, the Fisher
information is minimal if n = 1, yielding

E12(θ ) = cos(θ + ϕ), IF (θ ) = 1 . (13)

where ϕ is a constant of integration.
Requiring perfect anticorrelation (correlation coefficient −1) in the case that a = c (θ = 0), the

hase ϕ must be equal to π and we obtain

E12(θ ) = −a · c = − cos θ, (14)

and

p(x, y|a, c) =
1 − x y a · c

4
. (15)

The correlation Eq. (14) with the minus sign known from the quantum theory of two spin-1/2
objects in the singlet state (see Appendix M), plays a crucial role in Bell’s theorem (see Section 11.1).
Remarkably, the solution Eq. (13) with ϕ = 0, that is E12(θ ) = +a · c, cannot be obtained from the
quantum theory of two spin-1/2 objects [24], see Section 8.2.
14
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Fig. 4. Analysis of experimental data (data set called scanblue1) recorded in the EPRB experiments performed by Weihs
t al. [88]. (a): the correlation E(α+ θ, β) as a function of the bias applied to Alice’s EOM for a time coincidence window

W = 2 ns. In the experiment, the angle θ , which is proportional to the bias, changes every 5 seconds [88]. The number
of coincidences during each 5 s period is at least 7500. The minimum of average times between detection events is
⟨δt⟩ ≈ 24 000 ns, an order of ten thousand larger than the time window W = 2 ns used to compute the correlations. The
pair of setting (α, β) is chosen randomly out of four possibilities [26,88]. Open squares: (α, β) = (a, c); solid squares:
(α, β) = (a, d); open circles: (α, β) = (b, c); solid circles: (α, β) = (b, d), where a = 0, b = π/4, c = π/8 and d = 3π/8.
These correlations cannot be obtained from Bell’s model (see Eq. (35) below). (b): same as (a) except that the time
coincidence window W = 1000 ns, much smaller than ⟨δt⟩ ≈ 24 000 ns. These correlations are compatible with Bell’s
model (see Eq. (35) below).

It is worth noting that the derivation that led to Eqs. (14) and (15) does not make any reference
to concepts of quantum theory. Apparently, the requirement that an EPRB experiment yields
unpredictable individual outcomes but reproducible and robust results for the averages (which are
zero) and perfect anticorrelation if a = c suffices to show that the correlation must be of the form
Eq. (14), with the plausibility to observe a pair (x, y) given by Eq. (15). In short, any ‘‘good’’ EPRB
experiment is expected to yield Eq. (15).

Whether the theoretical description embodied in Eq. (15) survives the confrontation with the
discrete data obtained from experiments can only be established a posteriori. For instance, in
Section 9 we plot Eq. (14) and the data given by Eq. (5c) and find satisfactory agreement in one
case (Fig. 4a) and significant disagreement in the other (Fig. 4b).

Not surprisingly, the same logical inference reasoning also yields a description of an experiment
with an idealized Stern–Gerlach magnet [23]. To see this, imagine that the particles leaving the
rightmost Stern–Gerlach magnet (see Fig. 2) in the direction labeled y = +1 (or y = −1) pass
through another identical Stern–Gerlach magnet (not shown in Fig. 2 but see Fig. F.11 in Appendix F)
with its uniform magnetic field component in the direction d and outputs labeled by z = ±1.

Note that if an ideal Stern–Gerlach magnet is to function as an ideal filter device, we must
require that z = y if d = c. Otherwise, assigning the attribute/label y to a particle is meaningless.
Furthermore, we assume that the average of the z’s does not change if we apply the same rotation
to c and d. Denoting c · d = cos ξ , expressing the notions of reproducible and robust statistical
experiments as before and accounting for rotational invariance, it follows that the corresponding
Fisher information

IF(ξ ) =

∑
z=±1

1
p(z|ξ )

(
∂p(z|ξ )
∂ξ

)2

> 0, (16)

for the plausibility p(z|ξ ) to observe the event z = ±1 under the condition ξ must be independent
of ξ , positive and minimal [23]. Solving the optimization problem [23] yields IF(ξ ) = 1 and

p(z|ξ ) =
1 ± z cos ξ

2
=

1 ± z c · d
2

, (17)

where the ± sign reflects the ambiguity in assigning +1 or −1 to one of the directions. In the
ollowing, we remove this ambiguity by opting for the solution with the ‘‘+’’ sign.
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Note that quantum theory postulates Eq. (17) (through the Born rule) whereas the logical
nference approach applied to ‘‘good’’ experiments yield Eq. (17) without making reference to any
oncept of quantum theory.

.1. Polarization instead of magnetic moments

Most EPRB laboratory experiments employ photons instead of massive, electrically neutral
agnetic particles. The Stern–Gerlach magnets in Fig. 2 are then replaced by polarizers with their
lane of incidence perpendicular to the propagation direction of the photons (taken as the z-
irection in the following). The unit vectors c and d, describing the orientations of the axes of the
olarizers can be written as c = (cos c, sin c, 0) and d = (cos d, sin d, 0).
Let us first model a thought experiment aimed at demonstrating perfect filtering of the polar-

ization. We imagine placing two identical, ideal polarizers in a row (see also Fig. B.10). Repeating
the steps that led to Eq. (17) and requiring that a polarizer acts as perfect filtering device for all
c = d, we find that reproducible and robust statistical experiments are described by the plausibility
(see Appendix D)

p(z|c − d) =
1 ± z cos n(c − d)

2
=

⎧⎨⎩ cos2 n(c−d)
2 , z = ±1

sin2 n(c−d)
2 , z = ∓1

. (18)

omparing Eq. (18) with Malus’ law for the intensity of polarized light (= many photons) passing
hrough a polarizer, we conclude that the solution with n = 1 is incompatible with experimental
acts and should therefore be discarded. The solution with n = 2 yields Malus’ law. As discussed
elow, quantum theory attributes this empirical finding to the fact that photons are spin-one
articles.
Repeating the derivation for the EPRB setup, with polarizers and photons instead of Stern–

erlach magnets and magnetic moments, we find

E12(θ ) = ± cos 2θ . (19)

here θ = c−d = arccos c ·d expresses the difference in the axis angles of the polarizers, replacing
he Stern–Gerlach magnets in Fig. 2. Requiring perfect anticorrelation (correlation coefficient −1) in
he case that θ = 0, only one of the two solutions in Eq. (19) survives and we have E12(θ ) = − cos 2θ .

Eqs. (18) and (19) differ from Eqs. (14) and (17) by the appearance of the extra factor of two in
he argument of the cosine. Within quantum theory, this can be explained as follows. A photon is
hought of as a massless, electrically neutral particle with spin S = 1, with a quantized polarization
hat can only take two values ±h̄. In contrast, a neutron for instance is a massive spin S = 1/2
article, with a quantized magnetic moment that can only take two values ±h̄/2. The extra factor
f two stems from the difference between S = 1 and S = 1/2 particles.
Logical inference provides a mathematically well-defined framework to model empirical, sta-

istical data acquired by reproducible and robust, that is ‘‘good’’ experiments. It does not provide
ictures of the individual objects and processes involved in actually producing the discrete data. LI
odels belong to M2C.

. Modeling data: separation of conditions

Instead of postulating the axioms of quantum theory and reproducing textbook material (see
lso Appendix M), we use the EPRB experiment to show that its quantum-theoretical description
irectly follows from another representation of the frequencies Eq. (4). By doing so, we do not
eed to call on Born’s rule, for instance. We proceed directly from discrete data and the logical
nference description of Section 7 to the quantum-theoretical description. In doing so, we avoid
ll metaphysical problems resulting from the various interpretations of quantum theory. Thus, we
onstruct a mapping from the data (the frequencies) to a M2C (quantum theory).
16
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The basic idea is rather simple. Instead of using the standard expression

⟨x(c1, c2)⟩ =

∑
k∈K

x(k)f (k|c1, c2) . (20)

for the average of a function x(k) over the events k ∈ K that appear with a (relative) frequency
f (k|c1, c2), depending on conditions represented by the symbols c1 and c2, we search for functions
x(j, i|c1) and f̂ (i, j|c2) satisfying |̂x(j, i|c1)|≤ 1 and 0 ≤ |̂f (i, j|c2)|≤ 1 and for which

⟨x(c1, c2)⟩ =

∑
k,k′∈K

x̂(k′, k|c1 )̂f (k, k′
|c2), (21)

yields the same numerical value as given by Eq. (20), for all ⟨x(c1, c2)⟩’s of interest. Note that the
condition c1 appears in x̂(k′, k|c1) and not in f̂ (k, k′

|c2).
Recalling the recurring theme of this paper, the transition from Eq. (20) to Eq. (21) is

a jump over the impenetrable barrier between data (facts) and models thereof. Although
both representations yield the same averages, any interpretation of the symbols x̂(k′, k|c1) and
f (k, k′

|c2) in terms of discrete data, in terms of ‘‘reality’’, is problematic. Indeed, there is no
relation between x̂(k′, k|c1) and f̂ (k, k′

|c2) and actual discrete data, other than that the sum in
Eq. (21) yields these same numerical value for the average Eq. (20). The symbols x̂(k′, k|c1) and
f (k, k′

|c2) do not belong to the realm of these data (facts), they live in the domain of models
only. In Hertz’s terminology, the connection with the original picture is completely lost. Having
lost the connection with ‘‘reality’’, there is complete freedom regarding the interpretation one
would like to attach to the symbols x̂(k′, k|c1) and f̂ (k, k′

|c2). In this paper, we adopt a pragmatic
approach. We refrain from giving an interpretation to mathematical symbols except for those
that represent the original discrete data which we aim to describe.

In matrix notation Ŷk,k′ (c) = ŷ(k, k′
|c), Eq. (21) reads

⟨x(c1, c2)⟩ = Tr X̂T(c1) F̂(c2) = Tr F̂(c2) X̂T(c1) . (22)

As Eq. (22) indicates, we will be searching for representations that allows us to separate the
conditions c1 and c2, very much like solving differential equations by separating variables [24].
Although the appearance of matrices played a key role in Heisenberg’s matrix mechanics, the latter
and the approach pursued here are only distantly related [24]. A much more elaborate discussion
of how the separation of conditions leads to the framework of quantum theory can be found in
Ref. [24].

The separation of conditions, applied to data produced by experiments performed under several
sets of conditions (c1, c2), (c ′

1, c
′

2), . . ., is regarded as successful if it yields a decomposition into
models which depend on mutually exclusive, proper subsets c1, c ′

1, . . . and c2, c ′

2, . . . of the condi-
tions only, thereby reducing the complexity of describing the whole [24]. In the following, to keep
the presentation short, we limit ourselves to a cursory discussion of the separation-of-conditions
approach. A much more detailed treatment can be found in Ref. [24].

We illustrate the basic idea by application to the idealized Stern–Gerlach magnet, assuming that
the frequencies of counting z = ±1 particles are given by

f (z|c, d) =
1 + z c · d

2
, ⟨z⟩ =

∑
z=±1

zf (z|c, d) = c · d, (23)

that is, by the logical inference treatment of the same experiment, see Section 7.
The key idea is to exploit the fact that any choice of the (in this case 2 × 2) matrices F̂(c) and

(z, d) for which

Tr F̂(c) = 1, Tr P̂(z, d) F̂(c) = f (z|c · d), (24)

yields an equivalent description of the data and realizes the desired separation of conditions.
Before embarking on the search for a representation of Eq. (24) in terms of matrices, it is

worthwhile to ask ‘‘why not try to find a separation in terms of scalar functions z̃(k, c) and f̃ (k, d)∑ ˜ ˜
such that ⟨x(c1, c2)⟩ = k∈K z(k|c)f (k|d) ?’’ In Appendix F, we show that Bell’s theorem, applied to

17
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the Stern–Gerlach experiment, prohibits a separation in terms of scalar functions. Then, the next
step is to search for a representation in terms of functions of matrices. Conceptually, taking this
step is very similar to introducing complex numbers for solving equations such as x2 = −1, or
sing Dirac’s gamma matrices to linearize the relativistic wave equation. Indeed, introducing the
atrix structure implicit in Eq. (21) will permit us to carry out the desired separation.
Anticipating for the transition to quantum theory but without loss of generality, we may take

s a basis for the vector space of 2 × 2 matrices, the unit matrix e0 =

(
1 0
0 1

)
and the three

Pauli matrices e1 = σx
=

(
0 1
1 0

)
, e2 = σy

=

(
0 −i
+i 0

)
, and e3 = σz

=

(
+1 0
0 −1

)
. The

our hermitian matrices e0, e1, e2, e3 are mutually orthonormal with respect to the inner product
v|w⟩ = (1/2)Tr v†w. Furthermore, Tr e0 = 2, e2n = e0, and Tr en = Tr e†

0en = 0 for n = 1, 2, 3.
In terms of these basis vectors we have, in general

F̂(c) =
f0e0 + f1(c)e1 + f2(c)e2 + f3(c)e3

2
,

P̂(z, d) =
p0(z, d)e0 + p1(z, d)e1 + p2(z, d)e2 + p3(z, d)e3

2
, (25)

where the f ’s and p’s can be complex-valued and the factor 2 was introduced to compensate for
the fact that Tr e0 = 2. The constraints expressed by Eq. (24) imply that

f0 = 1, p0(z, d) +
1
2

3∑
n=1

fn(c)pn(z, d) =
1 + zc · d

2
. (26)

Obviously, Eq. (26) is trivially satisfied by the choice fn(c) = cn for n = 1, 2, 3 and p0(z, d) = 1,
pn(z, d) = zdn for n = 1, 2, 3. It is easy to verify that this choice yields eigenvalues of F̂(c) and P̂(z, d)
in the range [0, 1] (recall that c and d are unit vectors). From the arguments given above, it is not
clear that the choice of f ’s and p’s is unique, but this does not matter for the present discussion (see
Ref. [24] for more information). Our goal was to find at least one representation which describes
the data and for which the conditions c and d are separated.

By construction, the matrix F̂(c) has all the properties of the density matrix ρ(c) (see [24]). In
quantum-theory notation and with fn(c) = cn and pn(z, d) = zdn, we have

F̂(c) = ρ(c) =
1 + c · σ

2
, P̂(z, d) =

1 + zd · σ

2
H⇒

∑
z=±1

zTr P̂(z, d) F̂(c) = c · d . (27)

e emphasize that the quantum-theoretical description Eq. (27) has been constructed, not postu-
ated as in quantum theory textbooks, by searching for another representation of the same discrete
ata.
As mentioned before, Stern–Gerlach magnets act as filtering devices. This follows from P̂(z, d) =

P2(z, d), showing that P̂(z, d) is a projection operator. However, although P̂(z, d) appears in the
course of constructing a description of the data, we should not think of P̂(z, d) as an object that
affects particles but only as a description of how the frequency distribution of the particles changes
when the particles pass through a Stern–Gerlach magnet.

The frequencies Eq. (5d) describing the outcomes of the EPRB experiment depend on two,
two-valued variables and two conditions a and c. Therefore, instead of 2 × 2 matrices, we now
have to use 4 × 4 matrices. Repeating the steps that led to Eq. (27) and making use of the
separated description of the ideal Stern–Gerlach magnet Eq. (27), we can construct, not postulate,
the quantum-theoretical description of the EPRB experiment [102,106]. Specializing to the case
E1(a, c) = Ê2(a, c) = 0 and Ê12(a, c) = −a · c (see Eq. (14)) we obtain

ρ =
1 − σ1 · σ2

4
=

(
|↑↓⟩ − |↓↑⟩

√
2

)(
⟨↑↓| − ⟨↓↑|

√
2

)
, (28)

that is, the quantum-theoretical description of the singlet state of two spin-1/2 objects.
18
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Furthermore, for any ρ (such as Eq. (28)) which does not explicitly depend on a or c we have

Ê1(a, c) = ⟨σ1 · a⟩ = Tr ρ σ1 · a = ⟨σ1⟩ · a, (29a)
Ê2(a, c) = ⟨σ2 · c⟩ = Tr ρ σ2 · c = ⟨σ2⟩ · c, (29b)

Ê12(a, c) = ⟨σ1 · a σ2 · c⟩ = Tr ρ σ1 · a σ2 · c =

∑
α,β

aαΓα,βcβ , (29c)

where the 3 × 3 matrix Γα,β = ⟨σα1σ
β

2 ⟩. Equation Eq. (29) epitomizes the power of the quantum-
theoretical description. It separates the description of the state of the two-spin system in terms of
the expectation values ⟨σ1⟩, ⟨σ2⟩, and Γα,β = ⟨σα1σ

β

2 ⟩, from the description of the conditions (or
context) a and c under which the data was collected.

Noteworthy is also that in general, the single-spin averages Eqs. (29a) and (29b) do not depend
on c and a, respectively. In this sense, quantum theory exhibits a kind of ‘‘locality’’, ‘‘separation’’, or
perhaps better ‘‘independence’’, in that averages pertaining to particle 1 (2) only depend on a (c).
Of course, the correlation Eq. (29c) involves both a and c.

In short, separating conditions led to the construction of the quantum-theoretical description of
the EPRB experiment containing the following elements [6]

• The two-particle system emitted by the source has total spin zero and after leaving the source,
the particles do not interact.

• The statistics of the magnetizations, obtained by observing many pairs, is described by the
singlet state |ψ⟩ = (|↑↓⟩ − |↓↑⟩)/

√
2, or equivalently, by the density matrix Eq. (28).

• The single-particle averages ⟨σ1⟩ = ⟨σ2⟩ = 0 and the correlation Γα,β = −δα,β , implying
Ê1(a, c) = ⟨σ1 · a⟩ = 0, Ê2(a, c) = ⟨σ2 · c⟩ = 0, and Ê12(a, c) = ⟨σ1 · a σ2 · c⟩ = −a · c.

.1. Advantages and limitations of using quantum theory

The main advantage of using quantum theory as a model for the data is in the amount of
ompression that can be achieved. This can be seen as follows.
For a fixed pair of settings (a, c), the frequencies f (x, y|a, c) or the density matrix ρ, together

ith the projectors M(x|a) = (1 + xa · σ1)/2 and M(y|c) = (1 + yc · σ2)/2, describe the statistics of
equally well.
If we repeat the EPRB experiment with M different pairs of settings and characterize the results

by frequencies, we need 3M numbers to represent the statistics (not 4M because f (−1,−1|a, c) =

1 − f (1, 1|a, c) − f (1,−1|a, c) − f (−1, 1|a, c)).
On the other hand, quantum theory describes the statistics of all EPRB experiments for all

possible settings through the fifteen real numbers that completely determine the density matrix
ρ. To see this, we write the density matrix as a linear combination of a basis of the Hilbert space
of 4 × 4 matrices. One way to construct these basis vectors is to form the direct product of each
matrix from the set {1, σ x

1 , σ
y
1 , σ

z
1 } with each of the matrices from the set {1, σ x

2 , σ
y
2 , σ

z
2 }. There are

sixteen such 4 × 4 matrices with their corresponding coefficients. Because Tr ρ = 1, there are
only fifteen independent coefficients, which are real-valued because ρ is a hermitian, non-negative
definite matrix [6] and all elements of the basis are hermitian matrices too.

It is easy to show that these coefficients are completely determined by the six single spin
averages ⟨σ α1 ⟩, ⟨σ α2 ⟩, and nine two-spin averages ⟨σ α1 σ

β

2 ⟩, with α, β = x, y, z. Thus, in theory, we
need to perform only fifteen experiments to determine these expectation values and can then use
these numbers to compute Ê1(a, c) = ⟨σ1 · a⟩, Ê2(a, c) = ⟨σ2 · c⟩, and Ê2(a, c) = ⟨σ1 · a σ2 · c⟩ for any
pair of settings (a, c), see also Eq. (29).

In conclusion, compared to the representation in terms of frequencies which requires 3M
numbers to describe the statistics of M EPRB experiments, the quantum-theoretical description
requires only fifteen numbers to describe all possible EPRB experiments, a tremendous compression
of the data if M is large.

Regarding limitations of the quantum formalism, the no-go theorem presented in Section 8.2
gives a first indication that there exist data which can be modeled probabilistically but does not fit
19
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into the quantum formalism. It is also not difficult to see that, as a direct consequence of the linear
structure of the density matrix ρ = (1+a·σ1)/2 and the projector M(x|c) = (1+xc·σ1)/2, quantum
heory can never yield a frequency f (x|a, c) = (1 + x(a · c)2)/2, for instance. These limitations are,
of course, outweighed by the power of quantum theory to compress the statistics of the data in a
way that probabilistic models cannot.

Finally, it is important to recall that the quantum formalism also applies to cases where the
experimental data does not come in the form of single items of discrete data, i.e., individual events.
For instance, if an experiment measures the specific heat of some material, there are no ‘‘individual
events’’ to compute the statistics of, only a record of numbers for the specific heat as a function of
e.g., the temperature. Still, a quantum-theoretical model calculation of the specific heat is based on
Eq. (22), with suitable matrices F̂(c1) and X̂(c2), of course.

8.2. Quantum theory: a no-go theorem for a system of two spin-1/2 objects

Replacing the requirement of perfect anticorrelation by complete correlation, the solution of the
logical inference problem reads Ê12(a, c) = +a · c. To prove that such a correlation is incompatible
with quantum-theoretical description of two spin-1/2 objects [97], we consider the more general
case for which

Ê1(a, c) = Ê2(a, c) = 0, Ê12(a, c) = −qa · c, (30)

where q is a real number. Starting from the most general expression of the density matrix, Eq. (30)
implies that [97]

ρ =
1 − qσ1 · σ2

4
. (31)

However, as the eigenvalues of σ1 ·σ2 are −3,+1,+1,+1, the matrix Eq. (31) is only non-negative
efinite if q ≥ −1/3. In other words, Eq. (31) is not a valid density matrix if q < −1/3. This then

allows us to state the following no-go theorem:

There does not exist a quantum model for a system of two spin-1/2 objects that yields
p(x, y|a, c) = (1 − q x y a · c)/4 or, equivalently, the averages Ê1(a, c) = Ê2(a, c) = 0 and
correlation E12(a, c) = −q a · c unless −1/3 ≤ q ≤ 1.

An immediate consequence is that there does not exist a quantum-theoretical description of a
ystem of two spin-1/2 objects if

Ê1(a, c) = Ê2(a, c) = 0, Ê12(a, c) = +a · c . (32)

This ‘‘no-go theorem’’ may be viewed as a kind of ‘‘Bell theorem’’, although it is not a theorem about
the limited applicability of the separable model introduced by Bell (see Section 11.1) but rather a
theorem about the limited applicability of quantum theory. In contrast, a probabilistic model can
yield Eq. (32). Indeed, P(x, y|a, c) = (1 + x y a · c)/4 does exactly that.

8.3. Discussion

Recapitulating, starting from sets of two-valued data, we have constructed instead of postulated
the quantum-theoretical description of the ideal Stern–Gerlach and EPRB experiments by

(i) Assuming that the data sets were obtained by reproducible and robust, that is by ‘‘good’’,
experiments.

(ii) Requiring that the description of the data in terms of the relative frequencies can be separated
in a part that describes the preparation of particles with particular properties and other parts
that describe the process of measuring these properties.
20
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At no point use was made of concepts that are quantum-theoretical in nature. The data being the
immutable facts and quantum theory being a very convenient, minimalistic M2C describing the
data, there is no need to bring in Born’s rule to ‘‘explain’’ how quantum theory ‘‘produces’’ data. By
itself, a quantum-theoretical model simply cannot ‘‘produce’’ data and, as a description, also does
not need to.

Moreover, as the data is discrete, represented by two-valued variables, there is no need to
ostulate the quantization of the spin. The transition from the statistical description in terms of
requencies of events to a representation in terms of 2 × 2 matrices made it possible to decompose
he description of the whole in simpler descriptions of the parts. It is this decomposition that
enders quantum theory a powerful mathematical apparatus to describe discrete data.

Starting from the model-free description of any four sets of data pairs presented in Sections 5–8
ave shown how a combination of plausible reasoning and the basic requirement that a description
f the whole can be decomposed in simpler, separated parts leads to the construction of a MM, that
s quantum theory, which can capture the main features of these data.

In the two sections that follow, we scrutinize laboratory experiments which have been designed
o produce averages and correlations of data that, inspired by the quantum-theoretical description
f the EPRB thought experiment (see Appendix M), are expected to exhibit the features of the
‘imagined’’ data, listed in Section 3.

. Data analysis of an EPRB laboratory experiment with polarized photons

Most EPRB laboratory experiments focus on demonstrating that the measured correlation cannot
e described by Bell’s model, see Eq. (35), by showing that the Bell–CHSH inequality (see Ap-
endix E.1) is violated. Perhaps more interesting and ultimately more relevant is that the analysis of
he data of several EPRB experiments points to a conflict with the quantum-theoretical description
f the EPRB experiment [27–31].
As the data analysis of very different experimental setups [26,40–42,88–90] all point to similar

onflicts [27–31], we only show and analyze the data acquired in one of the more complete and
ophisticated EPRB experiments, the one performed by Weihs et al. [26,88], see Fig. 3. The protocol
hat we use to analyze these data is identical to the one employed by the experimenters [26,88],
ee Refs. [28,29,107] for more details.
In Figs. 4 and 5, we present some results of our analysis of the experimental data [26]. A first

bservation is that the correlations E(α + θ, β) shown in Fig. 4(a) are in excellent agreement with
he correlation Ê12(a, c) = − cos 2(a− c) of a system of two photon-polarizations, described by the
inglet state. The correlations shown in Fig. 4(a) have been obtained by analyzing the raw data with
time-coincidence window W = 2 ns, four orders of magnitude smaller than ⟨δt⟩ ≈ 24 000 ns,

the average time between the registration of a pair of detection events. The correlations shown in
Fig. 4(a) cannot, not even approximately, be reproduced by Bell’s model, see Eq. (35) below.

Fig. 4(b) demonstrates that by enlarging the time-coincidence window to W = 1000 ns ≪

⟨δt⟩, the maximum amplitude of the correlations E(α + θ, β) drops from approximately one to
about one half. Note that a time-coincidence window of W = 1000 ns is a factor of twenty-four
smaller than ⟨δt⟩ ≈ 24 000 ns, that is the frequency of identifying ‘‘wrong’’ pairs is small. The
minor modification that lets Bell’s toy model comply with Malus’ law (see Appendix L.2) yields
C(a, c) = −(1/2) cos 2(a − c), rather close to E(α + θ, β) shown in Fig. 4(b).

The analysis of the experimental data clearly demonstrates that the maximum amplitude of the
correlations E(α + θ, β) decreases as the time-coincidence window W ≪ ⟨δt⟩ increases. Within
the range 2 ns ≤ W ≪ ⟨δt⟩, W can be used to ‘‘tune’’ the correlations E(α + θ, β) such that
they are compatible with (i) Bell’s modified toy model (see Appendix L.2) or two spin-1/2 objects
described by a separable state (see Appendix M.4) or with (ii) two spin-1/2 objects described by a
non-separable pure state, e.g., a singlet state (see Appendix M).

Whether the polarization state is ‘‘entangled’’ depends on the choice of the coincidence
window W . Therefore, in this case, entanglement is not an intrinsic property of the pairs of
photons. It is a property of the whole experimental setup.

The obvious conclusion that one has to draw from the observation that the numerical values of

the correlations depend on the value of the time-coincidence window W is that any CM or MM that
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Fig. 5. Analysis of experimental data (data set called newlongtime2) recorded in the EPRB experiments performed by
Weihs et al. [88]. (a): the Bell–CHSH function |S| = |E(a, c) − E(a, d) + E(b, c) + E(b, d)| as a function of the time window
W for a = 0, b = π/4, c = π/8 and d = 3π/8. The dashed line at |S| = 2 is the maximum value for Bell’s model
Eq. (35), or a quantum system of two S = 1/2 objects in a separable (product) state. The dashed line at |S| = 2

√
2 is the

aximum value for a quantum system of two S = 1/2 objects in a singlet state. The total number of photons detected on
he left and right side during the experiment which lasted 60 s is 1733902 and 1621229, respectively. The total number
or coincidences with an absolute value of the time-tag difference less than W = 2 ns is about 35000. The minimum of
verage times between detection events is ⟨δt⟩ = 35 000 ns, more than 30 times the maximum value W = 1000 of the
ime coincidence window used to plot |S|. (b): selected single-particle averages as a function of the time coincidence
window W , contradicting the quantum-theoretical description on a very elementary level. Error bars correspond to 2.5
standard deviations.

aims to describe this particular EPRB experiment should account for the time-coincidence window
(or another mechanism) that is required to identify pairs of events. Phrased differently, the time-
coincidence window is essential to the way the data is processed and to the conclusions that are
drawn from the data. Therefore it has to be a part of the model description. Note that quantum
theory may be able to describe the experimental data for one particular W but lacks the capability
to also describe the W -dependence, simply because in orthodox quantum theory, time is not an
observable.

The importance of including the time-coincidence window W in a model for this particular
laboratory EPRB experiment is further illustrated in Fig. 5(a). Fig. 5(a) demonstrates that the
experimental data might be represented by Eq. (35) if the time coincidence window W is chosen
properly, that is if the Bell–CHSH function |S| ≤ 2.

For W < 100 ns, the value of |S| > 2 and the correlations are compatible with a quantum-
theoretical description in terms of a non-separable density matrix, but not with Bell’s model Eq. (35)
because the latter implies that |S| ≤ 2. From model-free inequality Eq. (6), it follows that if |S| ≥ 2,
he fraction of quadruples ∆ that one might be able to identify in the data that led to Fig. 5(a) must
e smaller than 2 − |S|/2.
For 200 ns < W < 1000 ns,much less than the average time interval ⟨δt⟩ = 35 000 ns between

wo detection events, the value of |S| ≤ 2 admits a description in terms of a separable density
atrix or, possibly, by Bell’s model Eq. (35).
Clearly, the time-coincidence window W can be ‘‘adjusted’’ in a wide range, such that either

S| ≤ 2 or |S| > 2. In other words, the ‘‘evidence’’ for a singlet state description appears or
isappears depending on very reasonable choices of W (that is W ≪ ⟨δt⟩ = 35 000 ns). These
esults corroborate our conclusions drawn on the basis of the data depicted in Fig. 4.

According to quantum theory, see Eq. (29), Ê1(a, c) = ⟨σ1 · a⟩ and Ê2(a, c) = ⟨σ2 · c⟩ should
ot depend on c and a, respectively. For small W , the total number of coincidences is too small
o yield statistically meaningful results. For W > 20 ns the change in some of these single-spin
verages observed on the left (right) when the settings of the right (left) are changed (randomly)
ystematically exceeds five standard deviations [28,29]. Indeed, E1(a, c) and E1(a, d) (squares in
ig. 5(b)) should, according to the quantum theory of a system in the singlet state, be independent
f c and d but in fact, they differ by at least five standard deviations. The same holds true for E2(a, c)
nd E (b, c) (circles in Fig. 5(b)).
2
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In conclusion, although most EPRB experiments that have been performed so far have produced
ata that violate the Bell–CHSH inequalities, these experiments do not produce data that agree with
he quantum-theoretical description of the EPRB experiment [27–31].

To head off possible confusion, it is not quantum theory which fails to describe the data. Indeed,
iven experimental data for the averages uα = ⟨σ1 · eα⟩, vα = ⟨σ2 · eα⟩, wα,β = ⟨σ1 · eα σ2 · eβ⟩ with

ex = (1, 0, 0), ey = (0, 1, 0), ez = (0, 0, 1), the density matrix

ρ =
1
4

⎡⎣1 +

∑
α=x,y,z

(
uασ α1 + vασ

α
2

)
+

∑
α,β=x,y,z

σ α1 wα,βσ
β

2

⎤⎦ , (33)

lways yields a perfect fit to this data if we allow the expansion coefficients uα , vα , and wα,β to
epend on a and c. The conflicts between quantum theory of the EPRB experiment and experimental
ata can only be resolved by new, much more accurate experiments.
In Section 11.5, we review a probabilistic model which complies with the separation principle

nd describes the raw, unprocessed data of the EPRB experiment. In the limit of a vanishing time-
oincidence window, this M2C yields the quantum-theoretical results for the EPRB experiment
107,108]. The latter implies that there is no fundamental problem to have a MM produce (e.g., with
he help of a pseudo-random number generator) data of the kind gathered in an EPRB experiment
nd recover the quantum-theoretical results. Indeed, that is exactly what the subquantum model
escribed in Section 11.6 shows.

0. Quantum computing experiments

Instead of performing EPRB experiments with photons, one can also carry out their own EPRB
xperiments with publicly accessible quantum computer (QC) hardware [109]. In the case of
hotons, disregarding technicalities, it is not difficult to realize situations in which there is no
nteraction between the photons of a pair at the time of their detection because photons need a
aterial medium to ‘‘interact’’. In contrast, in superconducting or ion trap quantum devices, the
ubits are very close to each other [110]. The qubits of a physical QC device are part of a complicated
any-body system, the behavior of which cannot be described in terms of noninteracting entities.
herefore, experiments with QC hardware are of little relevance to the EPR argument [15] as
uch. However, they can be used to test to what extent a QC [110] can generate data sets D that
omply with the quantum-theoretical description in terms of the singlet state, that is Ê1(a, c) = 0,
2(a, c) = 0, and Ê12(a, c) = −a · c. In contrast to EPRB experiments with photons for which it
s essential to have an external procedure (such as counting time coincidences or using voltage
hresholds) to identify photons, QC experiments can generate bitstrings for all qubits simultaneously
nd identification is not an issue.
In short, a QC is a physical device that is subject to a sequence of electromagnetic pulses and

hanges its state accordingly. The often complicated physical processes induced by these pulses are
ssumed to implement a sequence of unitary operations that change the wavefunction describing
he state of the ideal QC [110]. The sequences of unitary operations, constituting the algorithm, are
onveniently represented by quantum circuits [110]. Actually executing a quantum circuit such as
ig. 6 on QC hardware requires an intermediate step to translate the circuit into pulses. This step
s taken care of by the software of the QC hardware provider [109].

The quantum circuit shown in Fig. 6 changes the initial state |ψ⟩ = |00⟩ = |↑↑⟩, corresponding
o both spins up, to the singlet state |Φ⟩ = (|01⟩ − |10⟩)/

√
2 = (|↑↓⟩ − |↓↑⟩)/

√
2 and performs

easurements on qubits i and j, corresponding to rotation angles α and β about the vector
1, 1, 0)/

√
2, respectively.

The analytical calculation of the result of executing the quantum circuit shown in Fig. 6 on the
MM of an ideal QC yields for the single- and two-qubit expectation values Ê1(α, β) = Ê2(α, β) = 0
and Ê12(α, β) = − cos(α−β), respectively, as it should be for a quantum-theoretical description of
the EPRB experiment.

The software controlling the operation of an IBM-QE device transpiles the circuit Fig. 6 into
the mathematically equivalent circuit shown in Fig. 7 in which only so-called ‘‘native’’ gates
appear [111]. It is the latter circuit that is executed on the QC hardware.
23
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Fig. 6. Circuit to generate the singlet state |Φ⟩ = (|01⟩ − |10⟩) /
√
2 and perform measurements of the state of the qubits

i, j), projected on directions specified by the angles α and β , respectively. The symbol connecting the two qubit lines
enotes the controlled-NOT (CNOT) operation. For the meaning of the other symbols, see [110].

Fig. 7. Transpiled version of Fig. 6 in terms of the native gates ‘‘X’’, ‘‘Controlled X’’, ‘‘Rz’’, and ‘‘Sx’’, used by the IBM-QE
Manila device [111].

Fig. 8. Comparison between experimental data produced by the IBM-QE Manila QC device in September 2022 and
he quantum-theoretical description in terms of two spin-1/2 objects in the singlet state. For fixed angles of rotation a
nd c , the circuit shown in Fig. 7 is executed on the IBM-QE Manila QC device ten thousand times. For each pair of
ngles (α, β) = (a, c), the ten thousand pairs of bits that have been generated determine the ten thousand values of
A1,n, B1,n) which are then used to compute the single spin averages and correlation according to Eq. (5). In this set of
experiments, a = 0 and c = 0, 7.5, . . . , 360 degrees. Solid line: correlation Ê12(a, c) = − cos(a− c) of two spin-1/2 objects
in the singlet state; open triangles: experimental results for the single-spin averages E(1)

1 (△) and E(2)
1 (▽); solid squares:

experimental results for the correlation E(12)
1 . (a): data obtained by using qubits (i, j) = (1, 2) of the Manila device yields

ax |̂E12(a, c)| ≈ 0.83; (b): using qubits (i, j) = (2, 3) yields max |̂E12(a, c)| ≈ 0.90 with no visible asymmetry; (c): using
ubits (i, j) = (3, 4) yields max |̂E12(a, c)| ≈ 0.90 and a curve which is slightly shifted or asymmetric around c − a = 180
egrees.

In practice, a QC EPRB experiment consists of repeating the following three steps

1. Reset the device to the state with both qubits set to zero.
2. Apply the pulse sequences as specified by the circuit in Fig. 7.
3. Read out the state, yielding a pair of bits (bi, bj) taking one out of the four possibilities (0, 0),

(1, 0), (0, 1), or (1, 1).

he number of repetitions N is typically in the range 1000 – 10 000. Each readout yields a pair
x = 1 − 2bi = ±1, y = 1 − 2bj) which is added to the data set D1. From the N pairs of data items
n D1, we compute the averages and the correlation according to Eq. (5).

Fig. 8 shows the results of performing EPRB experiments on the IBM-QE Manila device, using
hree different pairs (i, j) = (1, 2), (2, 3), (3, 4) of the 5-qubit device. The best results are obtained
f we use qubits (2, 3), in which case the correlation E(12)

1 agrees with the quantum-theoretical result
within 10%, a considerable improvement from the 20% accuracy obtained with the IBM-QE devices
24
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Table 1
Raw data produced by the IBM-QE Manila QC device in September 2022 using qubits (i, j) = (2, 3), obtained by randomly
witching between circuits that use pairs of qubits which share one common qubit (see Fig. K.12 in Appendix K), yielding
(a, c) = E(12)

1 , E(a, d) = E(12)
2 , E(b, c) = E(12)

3 , and E(b, d) = E(12)
4 . In total, N = 10000 repetitions were used to compute

the Bell–CHSH function |S| = |E(a, c) − E(a, d) + E(b, c) + E(b, d)| = |E(12)
1 − E(12)

2 + E(12)
3 + E(12)

4 |.

s a b Ns n00 n01 n10 n11 E(12)
s E(1)

s E(2)
s

1 0 45 2545 271 1018 1038 218 −0.61572 0.02868 0.01297
2 0 135 2447 1058 234 209 946 0.63792 0.03555 0.05599
3 45 90 2536 264 994 1072 206 −0.62934 0.05363 −0.00789
4 90 135 2472 324 954 978 216 −0.56311 0.05340 0.03398

N = 10000 |S| = 2.4609

Table 2
The raw data for the expansion coefficients of the density matrix Eq. (33) describing two qubits/two spin-1/2 objects.
The data shows that the density matrix describing the data is, to a good approximation, given by ρ = (1 − 0.9σ1 · σ2)/4.
his data was produced by the IBM-QE Manila QC device in September 2022 using qubits (i, j) = (2, 3).
α β = x β = y β = z

uα vβ wα,β uα vβ wα,β uα vβ wα,β

x −0.0384 0.0936 −0.9052 0.0392 0.0710 −0.0790 0.0296 0.0658 0.0054
y −0.0202 0.0050 0.0192 0.0256 0.0252 −0.8932 −0.0048 0.0420 0.0148
z −0.0280 0.0314 0.0142 −0.0022 0.0286 −0.0384 0.0238 0.0242 −0.9072

available in 2016 [112]. The averages E(1)
1 and E(2)

1 are close to zero, as they should be for two
spin-1/2 objects in the singlet state.

Next, we perform QC experiments (employing qubits (i, j) = (2, 3)) to compute the Bell–CHSH
unction |S| = |E(a, c) − E(a, d) + E(b, c) + E(b, d)|. As in the EPRB experiment with photons (see
Section 9), between every repetition, a random number generator is used to choose between circuits
with (α, β) in Figs. 6 and 7 corresponding to the choices (a, c) = (0, 45), (a, d) = (0, 135),
(b, c) = (90, 45) and (b, d) = (90, 135). The experimental results are shown in Table 1.

Alternatively, assuming rotational invariance, we can use the data in Fig. 8 to calculate the
value of the Bell–CHSH function |S| = |E(a − c, 0) − E(a − d, 0) + E(b − c, 0) + E(b − d, 0)| =

3E(0, 45) − E(0, 135)| and find |S| = 2.3496, |S| = 2.5872, and |S| = 2.6529 for the runs employing
ubits (i, j) = (1, 2) (Fig. 8(a)), (i, j) = (2, 3) (Fig. 8(b)), and (i, j) = (3, 4) (Fig. 8(c)), respectively.
pparently, using the data yielding the ‘‘best’’ curve (Fig. 8(b)) does not necessarily result in the
argest violation of the Bell–CHSH inequality.

As shown in Table 1, randomly selecting between one of the four pairs of angles in-between each
easurement reduces the value from |S| = 2.5872 to |S| = 2.4609. A similar reduction is obtained

f for each sequence we alternate between the circuit for fixed (α, β) and a circuit that performs X
perations on each qubit and discard the bitstrings obtained with the latter. This reduction may be
nterpreted as some loss of coherence due to the switching between different circuits in-between
ach measurement but may equally well be within the statistical errors (which we could not test
ecause of limitations on the use of the IBM-QE device).
We have also obtained estimates for ⟨σα1 ⟩, ⟨σα2 ⟩, and ⟨σα1σ

β

2 ⟩ for α, β = x, y, z by running nine
different experiments on the IBM-QE Manila QC device. From the results presented in Table 2,
we may conclude that executing the circuit that, in theory, yields a singlet state and performing
measurements on the two qubits, produces data that can be described by the density matrix
ρ = (1 − 0.9σ1 · σ2)/4, which is close to the density matrix Eq. (28) of the singlet state and in
concert with the results depicted in Fig. 8(b).

Finally, by removing the ‘‘Controlled X’’ from Figs. 6 and 7, the resulting circuit computes
the single- and two-qubit averages for a two-particle system in a pure product state. The data
(not shown) are in good agreement with the results of the corresponding quantum-theoretical
description.

In summary, the IBM-QE Manila device produces data which is in good agreement with the
quantum-theoretical description in terms of the singlet state and product state (after removing
25
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the controlled X from the circuit). As mentioned earlier, these experiments have no bearing on
the issue of separability of the two qubits/spin-1/2 objects, but they do show that a many-body
system can produce, in an event-by-event-like manner, data that is in good agreement with the
quantum-theoretical description of the EPRB experiment.

11. Non-quantum models

We take as the operational definition of a non-quantum model (NQM) any MM for which:

1. All variables of the model, including those which have not been or cannot be measured,
always have definite, not necessarily discrete, values.

2. All variables change in time according to a process complying with Einstein’s notion of local
causality.

ote that this operational definition applies to MMs only and does not relate to realism, the belief
hat there exists an external reality independent of anyone’s thought, knowledge or observation.

Part 1 of the operational definition rules out all probabilistic and quantum-theoretical models,
hich are M2C. The reason for this has already been discussed in Section 1. We repeat it here in
lightly different words. By construction, neither probability theory nor quantum theory contain a
pecification of a procedure that assigns values to the random variables that connect these theories
o the individual events that are at the core of, but external to, these MMs. Thus, M2Cs do not
omply with the first requirement listed above but the combination of a M2C and pseudo-random
umber generators providing definite values to these random variables does. Of course, the latter
s a CM, no longer a M2C. In this section, in formulating a MM, it is implicitly assumed that, when
ecessary, the MM is turned into a model that generates discrete data (a CM) by including, into
he description, an appropriate algorithm (e.g., a pseudo-random number generator) that generates
hese data.

Part 2 of the operational definition, the ‘‘locality principle’’, asserts that all physical effects are
ropagated with finite, subluminal velocities, so that no effects can be communicated between
ystems separated by space-like intervals [91]. This principle is related to but not the same as the
‘separability principle’’. The latter asserts that any two spatially separated systems possess their
wn separate real states [91], or in Bell’s words, that ‘‘mutually distant systems are independent of
ne another’’ [92]. The approach of separating conditions [24], exemplified in Section 8 extends the
‘separability principle’’ in that there is no reference to ‘‘spatially separated’’ or ‘‘mutually distant’’.

A key question in the foundations of quantum physics is whether there exist NQMs that yield the
tatistical results of the quantum-theoretical description of the EPRB experiment. The answer to this
uestion is ‘‘yes’’ [2,97,107,108,113]. In the subsections that follow, we review an LHVM that fails
t producing the (imagined) data of the EPRB experiment (Section 11.1) and a M2C (Section 11.5)
nd a CM (Section 11.6) that both succeed.

1.1. Bell’s models and theorem

The quantum-theoretical description of the EPRB experiment in terms of two spin-1/2 objects
escribed by the singlet state yields for the correlation Ê12 = −a · c (see Section 8 or Appendix M
or more details). Bell demonstrated that there is a conflict between the quantum-theoretical model
f the EPRB experiment and a class of local realist models [43,93,96].
First, Bell considered a model for the correlation C(a, c) of the form [43]

C(a, c) = −

∫
A(a, λ)A(c, λ)µ(λ) dλ, A(a, λ) = ±1, 0 ≤ µ(λ),

∫
µ(λ) dλ = 1, (34)

here the function A(a, λ) is assumed to model the process that generates the discrete data in the
EPRB experiment.

Bell gave a proof that C(a, c) cannot arbitrarily closely approximate the correlation −a · c for all
unit vectors a and c [43]. According to Bell himself (see Ref. [93](p.65)), this is the theorem. From
26
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Eq. (34) and A(a, λ) = ±1 it follows immediately that C(a, c) = −1 for all a = c, a characteristic
eature of the correlation of two spin-1/2 objects described by a singlet state.

Subsequently, Bell showed that his theorem also holds for a more general expression of the
orrelation Eq. (34), namely [93,96]

C(a, c) =

∫
A(a, λ)B(c, λ)µ(λ) dλ, |A(a, λ)| ≤ 1, |B(c, λ)| ≤ 1, 0 ≤ µ(λ),

∫
µ(λ) dλ = 1,

(35)

here the functions A(a, λ) and B(c, λ) are assumed to model the process that generates the discrete
ata in the EPRB experiment.
Bell’s theorem only applies to MMs of the type Eqs. (35) and, as we show later by concrete

xamples, certainly not to all MMs for the EPRB experiments. In fact, Bell’s theorem does not apply
o MMs for the raw, discrete data generated by EPRB laboratory experiments, see Section 9. For
onvenience of the reader, the standard proof of Bell’s theorem is given in Appendix E. Alternative
roofs for specific choices of the functions A(a, λ) and B(c, λ) that are not based on Bell-type
nequalities are given in Appendix G and Appendix H.

MMs defined by Eq. (35) are commonly referred to as local hidden variable models (LHVMs). The
pecification of the dependence of A(a, λ) on a and λ and of B(c, λ) on c and λ is an integral part
f any LHVM. The symbol λ stands for all ‘‘hidden variables’’, taking values in a domain denoted
y Λ. The term ‘‘local’’ refers to the fact that for each value of λ, the value of A(a, λ) (B(c, λ)) does
ot depend on the value of c (a) (see Ref. [93], p.15,36). This requirement of independence, made
xplicit by writing A(a, λ) and B(c, λ), guarantees that the model satisfies Einstein’s criterion of local
ausality. Actually, this requirement ensures much more, namely that the choice of c (a) can never
ave an effect on the value of A(a, λ) (B(c, λ)), not in the future nor in the past. In this sense, the
erm ‘‘local’’ is somewhat unfortunate and misleading but in the spirit of ‘‘the child (Eq. (35)) should
ave a name’’, the ‘‘L’’ in LHVM is fine as long as we keep in mind that ‘‘local’’ does not refer to
instein’s notion of local causality.
In Eq. (35), the symbol λ stands for one or more variables. The integrals over λ in Eq. (35) may

e defined in terms of sums running over a partition of the domain Λ in P elements Vi and letting
→ ∞. In particular we have

C(a, c) =

P∑
i=1

A(a, λi)B(c, λi)κ(Vi), (36)

here λi denotes an arbitrary point in the partition element Vi, and κ(Vi) ≥ 0 is a measure of the
‘volume’’ of Vi satisfying

∑P
i=1 κ(Vi) = 1.

With an eye on the divide between discrete data and MMs describing these data, consider the
ase where A(a, λ) = ±1 and B(c, λ) = ±1. Once the dependence of A(a, λ) and B(c, λ) and the
artition of the domain Λ in P parts have been fixed, we can use a digital computer to generate
he ±1’s. Therefore, in its discretized form Eqs. (36) and when implemented as a CM, Bell’s MM
ctually produces discrete data. There is no barrier of the kind mentioned in Section 1.

1.2. Extension of Bell’s theorem to stochastic models

Bell’s theorem can be generalized to stochastic models. With A(a, λ) =
∑

x=±1 xP(x|a, λ) where
≤ P(x|a, λ) ≤ 1 denotes the probability for x = ±1 conditional on a and λ and similarly

(c, λ) = −
∑

y=±1 yP(y|c, λ), Eq. (35) becomes

C(a, c) = −

∑
x,y=±1

∫
xyP(x|a, λ)P(y|c, λ)µ(λ) dλ, 0 ≤ µ(λ),

∫
µ(λ) dλ = 1, (37)

nd Bell’s theorem now says that there do not exist probabilities P(x|a, λ) and P(y|c, λ) such that
(a, c) = −a · c.
27
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Once we move into the realm of probabilistic models, there are some new aspects that are not
resent in a model that is formulated in terms of variables that take values ±1 only. One can argue
hat the values of the variables x and y appearing in Eq. (37) are random and therefore not known
at all times. Then, according to our definition, Eq. (37) does not qualify as an NQM but Eq. (37)
still qualifies as a local, factorable stochastic model [47]. The latter is ‘‘local’’ in the sense that
mathematical entities, P(x|a, λ) and P(y|c, λ) do not depend on c and a, respectively. However, as
robabilities express logical relations, not always physical or causal relations [51], the fact that a
nd c appear separated in Eq. (37) has no bearing on Einstein’s criterion of local causality being
atisfied or not.

1.3. Proper probabilistic models

Any correct probabilistic description of the data collected in an EPRB experiment has to start from
he probability P(x, y|a, c) for the joined event (x, y), conditional on a and c. Let us try to express
(x, y|a, c) in terms of P(x|a, λ) and P(y|c, λ). According to the rules of probability theory [4,7], we

may write

P(x, y|a, c) =

∫
P(x, y|a, c, λ)µ(λ) dλ =

∫
P(x|y, a, c, λ)P(y|a, c, λ)µ(λ) dλ

̸=

∫
P(x|a, λ)P(y|c, λ)µ(λ) dλ, (38)

here 0 ≤ µ(λ) and
∫
µ(λ) dλ = 1.

To proceed, we have to make some assumptions, namely that it is allowed (or a good approxi-
ation) to

• replace P(y|a, c, λ) by P(y|c, λ),
• replace P(x|y, a, c, λ) by P(x|a, λ).

robabilities express logical relations, not always physical or causal relations, a fact that is easily
roven by considering an experiment involving a red and a blue ball (see e.g. Ref. [51]): It is
erfectly fine to compute P(‘‘first ball red’’ | ‘‘second ball blue’’) and P(‘‘first ball red’’), which are
n general not equal, even though, obviously, the second ball drawn cannot physically influence
he first ball drawn. Therefore, we cannot call upon the requirement of Einstein’s notion of local
ausality to justify replacing P(y|a, c, λ) by P(y|c, λ), see for instance [51]. As a matter of fact, within
a probabilistic setting, given that one has to start from Eq. (38), it is simply impossible to justify
an expression such as Eq. (37) on mathematical grounds. Of course, Eq. (37) may be useful as an
‘‘out-of-the-blue’’, uncontrolled approximation. The arguments against the justification of Eq. (37)
pertain to the probabilistic setting only. They cannot be used against the justification of Eq. (35) as
an NQM of the correlation between the functions A(a, λ) and B(c, λ).

It is easy to write −a · c in the factorized form Eq. (37). For instance, in the case of polarized
hotons we may write

− cos 2(a − c) =
1
2π

∑
x,y=±1

∫ 2π

0
xy

1 − x
√
2 cos 2(a − φ)

2
1 − y

√
2 cos 2(c − φ + π/2)

2
dφ .

(39)

he fractions that appear in Eq. (39) can take negative values and therefore do not qualify as
robabilities. In other words, model Eq. (39) has to be rejected on elementary grounds.

1.4. Probabilities and Bell-type inequalities

For completeness and because probabilistic models are often used to argue that Bell-type
nequalities only say something about the existence of joint probabilities and probability spaces
32,33,48,49,52,53,55,58,59,64,66,68–70,72,74,75,78–82,114,115], we collect some known results
28



H. De Raedt, M.I. Katsnelson, M.S. Jattana et al. Annals of Physics 453 (2023) 169314

e
w
(

f
a

w

f

about the Bell-type inequalities in a probabilistic setting [32,33,52,114]. Our presentation differs
from earlier ones [32,33,52,114] in that we extensively use the representation of the frequencies in
terms of their moments.

The first step in formulating a probabilistic model that describes the data generated by an EPRB
xperiment with settings a and c is to introduce the probability P(x1, x2|a, c) of the event (x1, x2),
here x1, x2 = ±1. As before, we use the notation |a, c) to keep track of the context (condition)
a, c) in (under) which the experiment was performed.

With the aim of testing for violations of e.g., the Bell–CHSH inequality, repeating the experiment
or different pairs of settings (a, d), (b, c) and (b, d) yields data that, within the probabilistic model,
re described by P(x1, x2|a, d), P(x1, x2|b, c), and P(x1, x2|b, d), respectively.
In applying Kolmogorov’s probability theory, it is often silently assumed that the context for

hich the Kolmogorov probability space (KPS) (Ω,F, P) has been constructed is fixed for the
remainder of the discourse [3,4]. However, a probabilistic model of the data obtained by four
EPRB experiments with different settings (a, c), (a, d), (b, c) and (b, d) has to explicitly account
or these four different contexts. In general, each of the four bivariates P(x1, x2|a, c), P(x1, x2|a, d),
P(x1, x2|b, c), and P(x1, x2|b, d) has its own KPS.

In the case of the EEPRB experiment (see Appendix B.5), there is only one single experiment
being performed in the context (a, b, c, d). Therefore, the probability P(x1, x2, x3, x4|a, b, c, d) is
well-defined and so is the associated KPS. In contrast, in principle only bivariates can be used to
model data originating from an EPRB experiment simply because conceptually and physically, it is
impossible to perform the four EPRB experiments as a single experiment. Consequently, in this case
there does not exist a probability P(x1, x2, x3, x4|a, b, c, d) and a single KPS that describes the data
of the collective of these four EPRB experiments. However, we may relax the requirement of a joint
KPS a little and ask the mathematically interesting question if there are conditions that guarantee
the existence of a joint distribution f̃ (x1, x2, x3, x4) such that only some of its marginals, namely∑

x3,x4=±1 f̃ (x1, x2, x3, x4) = P(x1, x2|a, c) etc., describe the data of the four EPRB experiments.
Such conditions were first established by A. Fine [32,33]. Conditions for the existence of a joint
distribution of three variables and a generalization to the many-variable case are also given in
Refs. [114,116], respectively.

The purpose of this subsection is to give an alternative derivation of these conditions in terms
of moments such as K1 =

∑
x2=±1 x1P(x1, x2|a, c) and K12 =

∑
x1,x2=±1 x1x2P(x1, x2|a, c) of the

probabilities. In particular, we focus on the statement that the Bell inequalities hold if and only
if there exist a joint distribution f̃ (x1, x2, x3, x4) for all observables of the experiment, returning the
marginals P(x1, x2|a, c), P(x1, x2|a, d), P(x1, x2|b, c), and P(x1, x2|b, d) which describe the data of the
four EPRB experiments with the corresponding settings.

From the viewpoint of modeling experimental data, the existence of f̃ (x1, x2, x3, x4) does
not bring additional insight in the physical processes that generated the data. Whenever
the conditions change and new data is collected, we have to recompute f̃ (x1, x2, x3, x4) from
the new data. Importantly, even if such a joint distribution f̃ (x1, x2, x3, x4) is found to exist,
this description of EPRB data accomplishes exactly the opposite of the separation in parts,
facilitated by the quantum-theoretical description. Indeed, the joint distribution provides a
description of the four particular experiments as whole.

In the following, we only consider real-valued functions f (x1, x2, . . .) of two-valued variables
{x1 = ±1, x2 = ±1, . . .} for which N =

∑
{x1=±1,x2=±1,...} f (x1, x2, . . .) ̸= 0. Then, we can,

without loss of generality, replace f (x1, x2, . . .) by f (x1, x2, . . .)/N such that the new f (x1, x2, . . .) is
normalized to one. The existence of a normalized, nonnegative real-valued function f (x1, x2, . . .)
is a prerequisite for constructing a KPS [3,4]. Our aim is to establish the equivalence between
the existence of a nonnegative, normalized function f (x1, x2, . . .) and inequalities involving the
moments of f (x1, x2, . . .).

Recall that (relative) frequencies are restricted to be ratios of finite integers, and are therefore
discrete data belonging to the domain of ‘‘reality’’, as defined in the introduction. As also explained
in the introduction, probability theory belongs to the class M2C which requires the introduction
of concepts (e.g., ‘‘real’’ real numbers such as the square root of 2) that are outside the domain
29
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of discrete data. Notwithstanding these conceptual differences, the equivalences established in this
section hold for both frequencies (discrete data) and probabilities.

11.4.1. Bivariates of two-valued variables
Without loss of generality, any real-valued, normalized function f (x1, x2) of the two-valued

ariables x1 = ±1 and x2 = ±1 can be written as

f (x1, x2) =
1 + K1 x1 + K2 x2 + K12 x1x2

4
=

1 + x1(K1 + K2 x1x2) + K12 x1x2
4

. (40)

rom Eq. (40) it follows that

1 =

∑
x1=±1

∑
x2=±1

f (x1, x2), (41a)

Ki =

∑
x1=±1

∑
x2=±1

xif (x1, x2), i ∈ {1, 2}, (41b)

Kij =

∑
x1=±1

∑
x2=±1

x1x2f (x1, x2), (41c)

here the normalization of f (x1, x2) implies Eq. (41a) and the K ’s are the moments of f (x1, x2).
If 0 ≤ f (x1, x2) ≤ 1, application of the triangle inequality to Eqs. (41b) and (41c) yields

K1| ≤ 1, |K2| ≤ 1, |K12| ≤ 1, and |K1 ± K2| ≤ 1 ± K12. Conversely, from |K1| ≤ 1, |K2| ≤ 1,
nd |K12| ≤ 1 it immediately follows from Eq. (40) that f (x1, x2) ≤ 1. As |K1 ± K2| ≤ 1±K12 implies
x1(K1x1 +K2x1x2) ≤ 1+K12x1x2, it immediately follows from Eq. (40) that f (x1, x2) ≥ 0. Therefore,
e have

Theorem I: There exists a real-valued, normalized, nonnegative function f (x1, x2) of
two-valued variables with moments K1, K2 and K12 if and only if all the
inequalities

|K1|≤ 1 , |K2| ≤ 1 , |K12|≤ 1 , (42)

|K1 ± K2| ≤ 1 ± K12 , (43)

are satisfied. The explicit form of f (x1, x2) in terms of its moments is given
by Eq. (40).

11.4.2. Trivariate of two-valued variables
Without loss of generality, any real-valued, normalized function f (x1, x2, x3) of the two-valued

ariables x1 = ±1, x2 = ±1, and x3 = ±1 can be written as

f (x1, x2, x3) =
1 + K1 x1 + K2 x2 + K3 x3 + K12 x1x2 + K13 x1x3 + K23 x2x3 + K123 x1x2x3

8
. (44)

rom Eq. (44) it follows that

1 =

∑
x1=±1

∑
x2=±1

∑
x3=±1

f (x1, x2, x3), (45a)

Ki =

∑
x1=±1

∑
x2=±1

∑
x3=±1

xif (x1, x2, x3), i ∈ {1, 2, 3}, (45b)

Kij =

∑
x1=±1

∑
x2=±1

∑
x3=±1

xixjf (x1, x2, x3), (i, j) ∈ {(1, 2), (1, 3), (2, 3)}, (45c)

K123 =

∑
x1=±1

∑
x2=±1

∑
x3=±1

x1x2x3f (x1, x2, x3), (45d)

here the K ’s are the moments of f (x1, x2, x3) and Eq. (45a) is a restatement of the normalization
of f (x , x , x ).
1 2 3
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If 0 ≤ f (x1, x2, x3) ≤ 1, it follows that all the K ’s in Eq. (45) are smaller than one in absolute
value. Furthermore, it immediately follows that the marginals f3(x1, x2) =

∑
x3=±1 f (x1, x2, x3),

f2(x1, x3) =
∑

x2=±1 f (x1, x2, x3), and f1(x2, x3) =
∑

x1=±1 f (x1, x2, x3) are real-valued, normalized
and nonnegative bivariates. For each of these bivariates Theorem I holds, implying that |Ki ± Kj| ≤

± Kij for (i, j) ∈ {(1, 2), (1, 3), (2, 3)}.
Other inequalities involving moments follow by adding inequalities f (x1, x2, x3) ≥ 0 for different

alues of (x1, x2, x3). For instance, we have

4[f (+1,+1,+1) + f (−1,−1,−1)] = 1 + K12 + K13 + K23 ≥ 0, (46a)
4[f (−1,+1,+1) + f (−1,+1,+1)] = 1 − K12 − K13 + K23 ≥ 0, (46b)

hich can be combined to read |K12 + K13| ≤ 1+K23. Similarly, one shows that |K12 − K13| ≤ 1−K23,
K13 ± K23| ≤ 1 ± K12, and |K12 ± K23| ≤ 1 ± K13.

Adding other pairs of inequalities, we obtain for instance

4[f (+1,+1,+1) + f (−1,−1,+1)] = 1 + K3 + K12 + K123 ≥ 0, (47a)
4[f (−1,+1,+1) + f (+1,−1,+1)] = 1 + K3 − K12 − K123 ≥ 0, (47b)

hich can be combined to read |K123 + K12| ≤ 1+K3. Similarly, one shows that |K123 − K12| ≤ 1−K3,
K123 ± K13| ≤ 1 ± K2, and |K123 ± K23| ≤ 1 ± K3.

Conversely, assume that 1+K3+K12+K123 ≥ 0, 1+K1+K2+K12 ≥ 0, and 1+K12+K13+K23 ≥ 0
nd consider the expression X = 1+K1+K2+K3+K12+K13+K23+K123. Using K123 ≥ −1−K3−K12
e have X ≥ K1+K2+K13+K23 and using K1+K2 ≥ −1−K12 ≥ 0 we obtain X ≥ −1−K12+K13+K23
hich, by virtue of K13 + K23 ≥ −1 − K12, is nonnegative. Similarly, one can show that all eight
xpressions of f (x1, x2, x3) are nonnegative if all inequalities between all the first, all the second,
nd the third moments hold.
Collecting all these inequalities, we have

Theorem II: There exists a real-valued, normalized, nonnegative function f (x1, x2, x3) of
two-valued variables with moments given by Eq. (45) if and only if all the
inequalities

|K1| ≤ 1 , |K2|≤ 1 , |K3|≤ 1 ,
|K12| ≤ 1 , |K13|≤ 1 , |K23|≤ 1 ,

(48a)

|K1 ± K2| ≤ 1 ± K12 , |K1 ± K3|≤ 1 ± K13 ,

|K2 ± K3| ≤ 1 ± K23 ,
(48b)

|K12 ± K13| ≤ 1 ± K23 , |K12 ± K23|≤ 1 ± K13 ,

|K13 ± K23| ≤ 1 ± K12 ,
(48c)

|K123 ± K12| ≤ 1 ± K3 , |K123 ± K13|≤ 1 ± K2 ,

|K123 ± K23| ≤ 1 ± K1 , |K123|≤ 1 ,
(48d)

are satisfied. The explicit form of f (x1, x2, x3) in terms of its moments is given
by Eq. (44).

Clearly, there is a lot of redundancy in Eq. (48). There are 36 inequalities in Eqs. (48b)–(48d)
ut we need only eight inequalities to express the requirement that f (x1, x2, x3) ≥ 0. We list the
nequalities involving the moments in the form Eq. (48) to display the symmetry with respect to
he indices 1, 2, and 3 and to emphasize that Eq. (48c) directly relates to all Bell-type inequalities
nvolving correlations (the Kij’s) obtained from runs of the EPRB experiments with three different
airs of settings. Note that because of Eq. (N.6), if one of the pair of inequalities in Eq. (48c) holds,
lso the other two pairs also hold.
Rewriting Eq. (48d) as

−1 ∓ K ∓ K ≤ K ≤ 1 ± K ∓ K , (i, j, k) = (1, 2, 3), (2, 1, 3), (3, 1, 2), (49)
i jk 123 i jk
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it follows that

−1 + max
(i,j,k)

|Ki + Kjk| ≤ K123 ≤ 1 − max
(i,j,k)

|Ki − Kjk|, (i, j, k) = (1, 2, 3), (2, 1, 3), (3, 1, 2) . (50)

Assume that we are given first and second moments that satisfy the inequalities Eqs. (48a)–(48c).
Then, according to Eq. (50) and Theorem II, we can always find a value of K123 such that the
resulting expression Eq. (44) is a normalized nonnegative function f (x1, x2, x3). Therefore, there exist
a normalized, nonnegative trivariate of three two-valued variables if and only if the first and second
moments satisfy the inequalities Eqs. (48a)–(48c).

11.4.3. Quadrivariate of two-valued variables
EPRB experiments with photons aiming at demonstrating a violation of the CHSH inequality

require collecting data for four different pairs of contexts/conditions. As it is physically impossible to
perform the four EPRB experiments in one run of an experiment, there does not exist a probability
P(x1, x2, x3, x4|a, b, c, d) and a single KPS that describes the data of these four EPRB experiments. As
a matter of principle, four bivariates with different KPS’s are required to model the data originating
from the four runs of the EPRB experiments.

However, as mentioned earlier, it is of interest to ask for the conditions that guarantee the
existence of a joint probability f̃ (x1, x2, x3, x4) such that some of its bivariate marginals yield
moments that describe the data of the four EPRB experiments. This question was first answered
by A. Fine [32,33].

Without loss of generality, any real-valued, normalized function f (x1, x2, x3, x4) of the two-
valued variables x1 = ±1, x2 = ±1, x3 = ±1, and x4 = ±1 can be written as

f (x1, x2, x3, x4) =
1 + K1x1 + K2x2 + K3x3 + K4x4

16

+
K12x1x2 + K13x1x3 + K14x1x4 + K23x2x3 + K24x2x4 + K34x3x4

16

+
K123x1x2x3 + K124x1x2x4 + K134x1x3x4 + K234x2x3x4 + K1234x1x2x3x4

16
, (51)

here the moments are given by

1 =

∑
x1=±1

∑
x2=±1

∑
x3=±1

∑
x4=±1

f (x1, x2, x3, x4), (52a)

Ki =

∑
x1=±1

∑
x2=±1

∑
x3=±1

∑
x4=±1

xi f (x1, x2, x3, x4), i ∈ {1, 2, 3, 4}, (52b)

Kij =

∑
x1=±1

∑
x2=±1

∑
x3=±1

∑
x4=±1

xixj f (x1, x2, x3, x4),

(i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, (52c)

Kijk =

∑
x1=±1

∑
x2=±1

∑
x3=±1

∑
x4=±1

xixjxk f (x1, x2, x3, x4),

(i, j, k) ∈ {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}, (52d)

K1234 =

∑
x1=±1

∑
x2=±1

∑
x3=±1

∑
x4=±1

x1x2x3x4 f (x1, x2, x3, x4) . (52e)

sing the triangle inequality, it is easy to show that none of the K ’s exceeds one in absolute value.
Summing Eq. (51) over one of the four variables yields the trivariate marginals

f4(x1, x2, x3) =
1 + K1 x1 + K2 x2 + K3 x3 + K12 x1x2 + K13 x1x3 + K23 x2x3 + K123 x1x2x3

8
, (53a)

f3(x1, x2, x4) =
1 + K1 x1 + K2 x2 + K4 x4 + K12 x1x2 + K14 x1x4 + K24 x2x4 + K124 x1x2x4

, (53b)

8
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f2(x1, x3, x4) =
1 + K1 x1 + K3 x3 + K4 x4 + K13 x1x3 + K14 x1x4 + K34 x3x4 + K134 x1x3x4

8
, (53c)

f1(x2, x3, x4) =
1 + K2 x2 + K3 x3 + K4 x4 + K23 x2x3 + K24 x2x4 + K34 x3x4 + K234 x2x3x4

8
, (53d)

rivariates are called ‘‘compatible’’ if their common first and second moments are the same.
he trivariates in Eq. (53) are pairwise compatible. For instance, we have

∑
x2=±1 f1(x2, x3, x4) =∑

x1=±1 f2(x1, x3, x4) = (1 + K3 x3 + K4 x4 + K34 x3x4)/4, showing that f1(x2, x3, x4) and f2(x2, x3, x4)
have the same moments K3, K4, and K34.

As in the case of the trivariate, linear combinations of f (x1, x2, x3, x4) ≥ 0 with different
(x1, x2, x3, x4) yield inequalities in terms of the K ’s. However, it saves work to use the inequalities
Eq. (48) and simply change the subscripts properly. In addition, from |K13 − K14| ≤ 1 − K34 and
|K23 + K24| ≤ 1 + K34 it follows that

|K13 − K14 + K23 + K24| ≤ |K13 − K14| + |K23 + K24| ≤ 2, (54)

which is one of the Bell–CHSH inequalities [93,95]. The other forms of Bell–CHSH inequalities follow
by interchanging subscripts. Therefore, the existence of the quadrivariate 0 ≤ f (x1, x2, x3, x4) ≤ 1
implies that all Bell-type inequalities hold.

Let us assume that four EPRB experiments yield discrete data which, to good approximation,
can be described by the frequencies f (x1, x3) = (1 + K1 x1 + K3 x3 + K13 x1x3)/4, f (x1, x4) =

(1 + K1 x1 + K4 x4 + K14 x1x4)/4, f (x2, x3) = (1 + K2 x2 + K3 x3 + K23 x2x4)/4, and f (x2, x4) =

(1+K2 x2+K4 x4+K24 x2x4)/4, and that all Bell–CHSH inequalities such Eq. (54) hold. Note that these
four frequencies are nonnegative, normalized, pairwise compatible bivariates of their respective
arguments. Therefore, Theorem I applies to each of them, implying that their moments satisfy the
inequalities Eqs. (42) and (43) (with appropriate changes of subscripts).

The mathematical problem we now pose ourselves is under which conditions there exists a
nonnegative, normalized function f̃ (x1, x2, x3, x4) with moments K1, K2, K3, K4, K13, K14, K23, and
K24. If we can find/construct f̃ (x1, x2, x3, x4), we have succeeded to describe the outcomes of the
four EPRB experiments with different contexts/conditions by one joint distribution, which can then
be used to construct a probabilistic model with a common KPS.

As an intermediate step, we prove that given the four, pair-wise compatible bivariates f (x1, x3),
f (x1, x4), f (x2, x3), and f (x2, x4) and the assumption that Eq. (54) hold, there exist two compatible
trivariates f2(x1, x3, x4) and f1(x2, x3, x4) with moments K1, K3, K4, K13, K14, K34, and K2, K3, K4, K23,
K24, K34, respectively. Except for K34, all moments are already known, derivable from the four, pair-
wise compatible bivariates. From the data of the four EPRB experiments, we cannot infer the value
of K34.

Therefore, the existence of f2(x1, x3, x4) and f1(x2, x3, x4) depends on whether is possible to
assign a value to K34 in the interval [−1, 1] such that f2(x1, x3, x4) and f1(x2, x3, x4) are nonnegative,
normalized trivariates. Lemma I (see Appendix J) shows that there exists such a value of the moment
−1 ≤ K34 ≤ 1 if there exist four nonnegative, normalized, pair-wise compatible bivariates f (x1, x3),
f (x1, x4), f (x2, x3), and f (x2, x4) and if Eq. (54) holds. Furthermore, the moments K1, K3, K4, K13,
K14, and K34 satisfy the inequalities Eqs. (48a)–(48c) (with appropriate change of subscripts). From
Theorem II and Eq. (50) it then follows that we can always find at least one value of K134 such that
there exists a nonnegative, normalized trivariate f2(x1, x3, x4) with these moments. Similarly, K2, K3,
K4, K23, K24, and K34 satisfy the inequalities Eqs. (48a)–(48c) (with appropriate change of subscripts),
implying that there exists a nonnegative, normalized trivariate f1(x2, x3, x4) with these moments.

Following Fine [33], we use these compatible trivariates f2(x1, x3, x4) and f1(x2, x3, x4) to define
the quadrivariate

f̃ (x1, x2, x3, x4) =

⎧⎨⎩
f2(x1,x3,x4)f1(x2,x3,x4)∑

x1=±1 f2(x1,x3,x4)
,
∑

x1=±1 f2(x1, x3, x4) > 0∑ . (55)

0 , x1=±1 f2(x1, x3, x4) = 0
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As 0 ≤ f2(x1, x3, x4) ≤
∑

x1=±1 f2(x1, x3, x4) and 0 ≤ f1(x2, x3, x4) ≤
∑

x1=±1 f2(x1, x3, x4) imply

that f2(x1, x3, x4)× f1(x2, x3, x4) ≤

(∑
x1=±1 f2(x1, x3, x4)

)2
≤
∑

x1=±1 f2(x1, x3, x4) ≤ 1. Therefore,

0 ≤ f̃ (x1, x2, x3, x4) ≤ 1 showing that Eq. (55) defines a normalized, nonnegative quadrivariate.
From Eq. (55) it follows immediately that

K̃i =

∑
x1=±1

∑
x2=±1

∑
x3=±1

∑
x4=±1

xi f̃ (x1, x2, x3, x4) = Ki, i ∈ {1, 2, 3, 4}, (56a)

K̃ij =

∑
x1=±1

∑
x2=±1

∑
x3=±1

∑
x4=±1

xixj f̃ (x1, x2, x3, x4) = Kij, (i, j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, (56b)

as required. The expression of the second moment −1 ≤ K̃12 ≤ 1 in terms of the other first
and second moments is rather lengthy and therefore not given here. By construction, the K̃ ’s
(with proper combination of subscripts) satisfy the inequalities Eqs. (48a)–(48c), which include the
Bell inequalities. Conversely, if (K1, K3, K4, K13, K14, K34) and (K2, K3, K4, K23, K24, K34) satisfy the
inequalities Eqs. (48a)–(48c), we can construct a normalized, nonnegative quadrivariate with these
moments.

11.4.4. Discussion
From the foregoing, it is abundantly clear that in contrast to Bell’s original derivation, the

derivation of Bell-type inequalities in the probabilistic setting does not rely on assumptions about
‘‘locality’’, ‘‘macroscopic realism’’, ‘‘non-invasive measurements’’ and the like. Violations of Bell-
type inequalities derived within the framework of a probabilistic model are a signature of the
non-existence of a joint distribution rather than of some signature of ‘‘quantum physics’’.

Most importantly, describing two-valued data of EPRB experiments performed under four differ-
ent conditions in terms of a joint distribution (if it exists) accomplishes exactly the opposite of the
description in separated parts provided by quantum theory, see the text in boldface in Section 11.4.

11.5. Stochastic hidden-variables model for the data collected in EPRB laboratory experiments

The fundamental problem with applying Bell’s model Eq. (35) to the description of experimental
data is the following. Evidently, in any laboratory EPRB experiment, before one can even think about
computing correlations of particle properties, it is necessary to first classify a detection event as
corresponding to the arrival of a particle or as something else. Such a procedure is missing in both
the EPRB thought experiment and Bell’s model Eq. (35). If the aim is to describe the data of an EPRB
laboratory experiment, it is necessary to generalize Bell’s model, for instance by incorporating such
an identification procedure. To the best of our knowledge, such a generalization was first studied
in Refs. [117,118].

As illustrated in Fig. 3 and further explained in Section 9, for any particular choice of settings, the
raw data produced by EPRB experiments comes in pairs {(xm, tm)|m = 1, . . . ,M} and {(yn, t ′n)| n =

1, . . . ,N} where, in practice, the numbers of detected events M and N are unlikely to be same.
In most EPRB experiments, the t ’s represent time tags, times at which the corresponding detectors
fired. More recent experiments [41,42] employ so-called event-ready detection techniques, in which
case the t ’s represent voltage pulses. In this case, the detection of a single photon is defined as the
voltage exceeding a voltage threshold, tuned to maximize the violation [41,42] of the Clauser-Horn
(CH) inequality [95]. These experiments have demonstrated a violation of the latter but, unlike for
the experiments discussed in Section 9, did not show results as a function of the rotation angles.
Conceptually and mathematically, the voltage threshold is just another mechanism to identify
pairs by rejecting events [119]. As the model presented in this section can be tailored to these
experiments by a minor modification [119], we focus on building a probabilistic model for the EPRB
experiment with polarized photons depicted in Fig. 3 and discussed in Section 9. A more general
treatment can be found elsewhere [113].

We idealize matters a little by assuming that N = M . Then, the data set looks like E =
′

{(xn, tn, yn, tn)|n = 1, . . . ,N}. As before, for simplicity, for polarized photons we use the angles
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a and c instead of a and c, respectively. Our goal is to construct the simplest probabilistic model
hich

1. describes the compound event (xn, tn, yn, t ′n) in terms of processes that are local to station 1
and 2,

2. yields Malus’ law (by construction),
3. yields the averages and the correlation of two spin-1/2 objects in the singlet state,
4. describes the dependence of the correlation on the time-coincidence window W , observed

experimentally (see Section 9),
5. yields the averages and the correlation that are obtained from the quantum-theoretical

description of two spin-1/2 objects in the product state.

For simplicity and in concert with features of the raw data listed in Section 4, we assume
that (xm, ym, tm, t ′m) and (xn, yn, tn, t ′n) are uncorrelated for all m ̸= n. Then the probability for the
(xn, yn, tn, t ′n) does not depend on the subscript n, which we omit in what follows.

Without infringing on the axioms of probability theory and without loss of generality, the
probability P(x, y, t, t ′|a, b) can always be expressed as an integral over ξ , ζ , representing the
polarization of the photons arriving in stations 1 and 2, respectively. We have

P(x, y, t, t ′|a, c) =
1

4π2

∫ 2π

0

∫ 2π

0
P(x, y, t, t ′|a, c, ξ , ζ )p(ξ, ζ |a, c)dξdζ . (57)

here p(ξ, ζ |a, c) denotes the probability density with which the source emits photons with
olarizations (ξ, ζ ) under the conditions (a, c).
With our eye on constructing a model having the same features as those used by Bell to prove

is theorem, that is independence/separability, we assume that (i) the values of x, y, t , and t ′ are
utually independent, (ii) the values of x and t (y and t ′) are independent of c and ζ (a and ξ ), (iii)
and ζ are independent of a or c . With these assumptions Eq. (57) becomes [113]

P(x, y, t, t ′|a, c) =
1

4π2

∫ 2π

0

∫ 2π

0
P(x|a, ξ )P(t|a, ξ )P(y|c, ζ )P(t ′|c, ζ )p(ξ, ζ )dξdζ . (58)

Note that xy-correlation calculated using Eq. (58) has the same mathematical structure as Eq. (37)
and therefore, according to Bell’s theorem, this correlation can never be arbitrarily close to
− cos 2(a − c) for all a and c .

However, EPRB experiments [26,88–90] employing a time-coincidence window W to identify
pairs of photons are not described by Eq. (58). Accounting for the time-coincidences requires that
we multiply Eq. (58) by the unit-step function Θ(W −|t − t ′|) and integrate over all possible t and
t ′. Therefore, the data used to compute the correlations are described by the probability

P(x, y|a, c) =

∫ 2π

0

∫ 2π

0
P(x|a, ξ )P(y|c, ζ )µ̂(ξ, ζ |a, c)dξdζ , (59)

where

µ̂(ξ, ζ |a, c) =
w(ξ, ζ |a, c)p(ξ, ζ )∫ 2π

0

∫ 2π
0 w(ξ ′, ζ ′|a, c)p(ξ ′, ζ ′)dξ ′dζ ′

, (60)

and the weight w(ξ, ζ |a, c) is given by

w(ξ, ζ |a, c) =

∫
+∞

−∞

∫
+∞

−∞

Θ(W − |t − t ′|)P(t|a, ξ )P(t ′|c, ζ ) dt dt ′ . (61)

Eq. (59) no longer has the structure of Bell’s model because the probability density Eq. (60) may
depend on (a, c) (violating the notion of separability). In other words, Bell’s theorem does not apply
to the probabilistic model defined by Eq. (59).

In order to proceed, we have to make a choice for the distribution of time delays. As a very
simply choice we take P(t|a, ξ ) = Θ(t)Θ(T (ξ − a) − t)/T (ξ − a), where T is a function specified
35
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below, and obtain

w(ξ, ζ |a, c) =
1

T (ξ − a)T (ζ − c)

∫ T (ξ−a)

0
dt
∫ T (ζ−c)

0
Θ(W − |t − t ′|) dt dt ′ . (62)

ith this definition of P(t|a, ξ ), the integrals in Eq. (62) can be worked out analytically [113].
Inspired by the results of event-by-event simulations [107,108,113], we set T (ξ − a) = T0|sin 2(ξ −

a)|d/2 where T0 and d are parameters of the model. As the full expression is not of immediate
interest, we only give the expressions for a few interesting limiting cases [113]:

w(ξ, ζ |a, c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , W ≥ T0

W (2T0−W )
T20

, d = 0 and W < T0

2W
max(T (ξ−a),T (ζ−c)) + O(W 2) , W → 0

. (63)

Let us first demonstrate how Eqs. (59) and (62) yield the correct quantum-theoretical expression
for two spin-1/2 objects in a product state. Assume that p(ξ, ζ ) = δ(ξ − α)δ(ζ − β). Then,
independent of the distributions of t and t ′, we find

P(x, y|a, c) = P(x|a, α)P(y|c, β), (64)

which has the structure of the probability for a quantum system in product state, see Appendix M.2.
Furthermore, independent of the choice of p(ξ, ζ ), we also recover Eq. (64) if Eq. (63) does not
dependent on ξ or ζ . Thus, as the first two rows of Eq. (63) show, we also recover Eq. (64) if W is
larger than the maximum time delay T0 or if the parameter d = 0.

Next, we demonstrate that Eqs. (59) and (62) yield the quantum-theoretical expressions for
the averages and the correlation of two photon-polarizations in the singlet state. We start by
assuming that the source emits pairs of photons with orthogonal polarizations, in symbols p(ξ, ζ ) =

δ(ξ + π/2 − ζ ).
For small W/T0, we use the expression in the third row of Eq. (63) and insert the expressions

P(x|a, ξ ) = (1+ x cos 2(ξ − a))/2 and P(y|c, ζ ) = (1+ y cos 2(ζ − c))/2 known from Malus’ law. By
symmetry, it follows immediately that E1(a, c,W → 0) = E2(a, c,W → 0) = 0. For even integer
values of d, the expression of the correlation E12(a, c,W → 0) can be obtained analytically. We
find [113]

E12(a, c,W → 0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

1
2 cos 2θ , d = 0

π
4 sin 2θ cos 2θ − cos 2θ + ln[|tan θ |sin

2 2θ/2
] , d = 2

− cos 2θ , d = 4
−

1
2 cos 2θ

[
1 + 24(19 + 5 cos 4θ )−1

]
, d = 6

−(53 cos 2θ + 7 cos 6θ )(39 + 21 cos 4θ )−1 , d = 8

, (65)

where θ = a−c. Clearly, for d = 4 andW → 0, the probabilistic model yields the desired correlation
E12(a, c) = − cos 2(a − c) for two photon polarizations described by the singlet state. For d > 4,
the resulting correlation is outside the scope of what a quantum-theoretical model of two spin-1/2
objects can describe because it violates the Cirel’son bound [98], see Eq. (M.11).

Repeating the calculation with parallel instead of antiparallel polarizations, that is with p(ξ, ζ ) =

δ(ξ − ζ ), simply changes the sign of E(a, b,W → 0) in Eq. (65). The resulting correlation is outside
the scope of what a quantum-theoretical model of two spin-1/2 objects can describe, (because
q < −1/3, see Section 8.2).

In conclusion, the probabilistic model for the raw data produced by EPRB experiments, in
combination with time coincidence counting employed in most of these experiments, does indeed
(for W → 0 and d = 4) yield the averages and the correlation of two spins-1/2 objects in the singlet
state, complies with Malus’ law and can (if d = 0 or W ≥ T0) also describe two spins-1/2 objects
n the product state.

EPRB experiments that do not rely on coincidence counting but identify photons by a process
hat is local to the observation station [41,42] can be treated similarly [119]. We only have to replace
36
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Eq. (62) by

w(ξ, ζ |a, c) = w(ξ |a)w(ζ |c), (66)

here

w(ξ |a) =

[
1

T (ξ − a)

∫ T (ξ−a)

0
Θ(W − t) dt

]
= Θ(W − T (ξ − a)) +

WΘ(T (ξ − a) − W )
T (ξ − a)

(67)

and work out the details.

11.6. Subquantum model: event-by-event simulation

In this section, we briefly discuss results obtained by event-by-event simulations that comply
with the operational definition of an NQM, as given in the beginning of this section. In the appropri-
ate limits, event-by-event simulation can reproduce, to very good approximation, all results of the
quantum theory for two spins-1/2 objects [2,97,107,108,113]. As there are abundant publications
about this simulation work, we refrain from describing the algorithm and refer the interested reader
to these publications.

Unlike real experiments, an event-by-event CM of the EPRB experiment can operate in a mode
in which all the data in D1, D2, D3, and D4 can be extracted from quadruples [2]. Computationally,
this feat is realized by using the same pseudo-random numbers for each of the four different
experiments [2]. In this case, the process that generates the data is said to comply with the notion
of counterfactual definiteness [120].

In the counterfactual definite mode of simulation, the four sets of data originate from one set
of quadruples, and therefore we have ∆ = 1. It then follows from Eq. (9) that SCHSH ≤ 2. Clearly,
the counterfactual definite mode of simulation can never generate data that leads to a violation of
the Bell–CHSH inequality. Consequently, Bell’s theorem guarantees that the counterfactual definite
mode of simulation can never yield a correlation that closely resembles E12 = −a · c.

Generating raw data E = {(x1, t1, y1, t ′1), . . . , (xN , tN , xN , t
′

N )} with the perfect, counterfactual
definite mode of simulation yielding a correlation that closely resembles E12 = −a · c can only
e accomplished by discarding raw data depending on the conditions a and c. Then the new data
ets D′

1, D
′

2, D
′

3, and D′

4 no longer have the property that all contribution to the correlations can be
eshuffled to form quadruples.

Fig. 9 shows the results of an event-by-event simulation of EPRB laboratory experiments with
hotons in which data is discarded, not by coincidence counting, but by a local procedure mimicking
he one used in the analysis of EPRB laboratory experiments [41,42], a procedure similar to the one
escribed by Eq. (66). For the complete specification of the simulation algorithm the reader should
onsult Ref. [97].
Fig. 9 demonstrates that the correlation (solid squares) and averages (triangles) obtained by the

vent-by-event simulation are in excellent agreement with the corresponding quantum-theoretical
esults. Also shown by the open circles is the correlation obtained without discarding raw data.
his correlation matches the one obtained from Bell’s modified toy model, see Appendix L.2. For
eference, the dashed line shows the correlation obtained from Bell’s toy model, see Appendix L.1.

In summary, the counterfactual definite mode of simulation can only generate raw data for the
’s, and B’s which can be extracted from quadruples. Therefore, the correlation computed with this
ata can never violate the Bell–CHSH inequality and, by appeal to Bell’s theorem, can never closely
esemble E12 = − cos 2(a − c). In complete agreement with model-free inequality Eq. (6), there is
nly one way out of the conundrum, namely one has to discard, with whatever procedure, data.
ell’s model Eq. (35) is too primitive. It does not contain such a procedure. On the other hand,
ll EPRB laboratory experiments (including the so-called loophole free experiments [40–42]), one
ay or another, never use all the raw data to check for violations of Bell-type inequalities but have
heir ways to identify a fraction of them as photons. It is this selection process that can give rise
o the violation of a Bell-type inequality (beyond the usual statistical fluctuations) and, in some
ases such as the one discussed in the present and the previous section, yields a correlation that
esembles E = − cos 2(a − c).
12
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Fig. 9. The averages and correlations as obtained by an event-by-event simulation of an EPRB laboratory experiment in
hich the detection of a photon in a station 1 or 2 depends on a threshold that is local to the respective stations [41,42].
here is no coincidence counting in this set up. Solid line: the correlation E12(a, c) = − cos 2(a − c), as obtained from LI
pplied to a reproducible and robust experiment (see Section 7) and from the quantum theory of two spins-1/2 objects in
he singlet state; dotted line: the correlation E12(a, c) = −1+ (2/π ) arccos(cos 2(a− c)) as obtained from Bell’s toy model
see Appendix L.1); solid squares: the correlation E(12)

1 (see Eq. (2)) computed from the data generated by the event-by-
vent simulation; open triangles: the averages (see Eq. (2)) E(1)

1 (△) and E(2)
1 (▽) computed from the data generated by the

vent-by-event simulation; open circles: the correlation E(12)
1 computed from the data generated by the event-by-event

imulation without accounting for the local thresholds. In the latter case, the simulation data is in excellent agreement
ith the correlation obtained from Bell’s modified toy model (see Appendix L.2). Using a threshold mechanism similar
o the one employed in the so-called loophole free EPRB experiments [41,42], there is excellent agreement between the
imulation data (solid squares and triangles) obtained with the quantum-theoretical description of the EPRB experiment.

2. Conclusion

The view taken in this paper is that discrete data recorded by experiments and mathematical
odels envisaged to describe relevant features (e.g., averages, correlations, etc.) of these data belong

n their own, separate universes and should be treated accordingly. Using EPRB experiments as an
xample, we have scrutinized various aspects of treating discrete data and mathematical models
hereof separately.

In the universe of discrete data, the number of operations one can carry out on the data without
hanging the numerical values of the relevant features is very limited. In fact, we can only resort
o the commutativity of the addition operation to reshuffle the order in which the contributions
o a sum appear. In this paper, we demonstrate that this property suffices to prove new nontrivial
ounds on the value of certain linear combinations (e.g., as they appear in the Bell–CHSH inequality)
f correlations. Being the result of elementary arithmetic, that is being the result of multiplying
nd adding numbers which take values plus and minus one only, these nontrivial bounds cannot
e violated by data obtained from EPRB experiments.
Most importantly, the proof of these nontrivial bounds does not require making assumptions

bout the process that produced the data. They are ‘‘model-free’’, linear functions of the number
f quadruples one can create by reordering the contributions to each of the correlations. If the
umber of quadruples is equal to the number of contributions to the correlations, the values of
hese nontrivial bounds coincide with the values known from the Bell, CHSH, or CH inequalities.
owever, these bounds have been derived in the context of a mathematical (Bell-type) model, not
n the context of experimental data. The model-free Bell-type bounds for discrete data, a special case
38
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of the general model-free inequality, may be violated. However, this violation has no bearing on the
validity of the assumptions that may have provided the motivation to construct the mathematical
(Bell-type) model.

The existence of the divide between the universes of discrete data and mathematical models
hereof is further supported by Fine’s theorem for a probabilistic model of the EPRB experiment.
f particular relevance to the present discussion is the part of the theorem that establishes the
ell–CHSH inequalities (plus compatibility) as being the necessary and sufficient conditions for
he existence of a joint distribution of the four observables involved in these inequalities. This
our-variable joint distribution returns the pair distributions describing the four EPRB experiments
equired to test for a violation of these inequalities. Fine’s theorem holds in the mathematical-model
niverse only. Only in the unattainable limit of an infinite number of measurements (that is by
eaving the universe of discrete data), and in the special case that the Bell–CHSH inequalities hold,
t may be possible to prove the mathematical equivalence between the model-free and Bell-type
ounds.
Having established that the discrete-data and mathematical-model universes are separate enti-

ies, a major question is how to establish the applicability and validity of a particular mathematical
odel. In the case that the results of individual measurements are assumed to be unpredictable, as

n EPRB experiments, the comparison is through the averages, correlations, etc., predicted by the
athematical model with those of the experimental data.
Starting from discrete data, we have demonstrated that the construction of a mathematical

odel giving a concise description of the averages and correlations computed from these data
ields the quantum-theoretical model of the EPRB thought experiment. Essential ingredients of
his construction are separation of conditions and the assumptions that the relevant features are
eproducible and change smoothly with smooth variations (robustness) of the conditions under
hich the experiments are carried out.
In contrast to the conventional approach which postulates that quantum theory models the

rocess by which experiments produce data, the constructive approach adopted in this paper is
ree of all issues created by attempts to attach an interpretation to the symbols appearing in the
athematical model and to ‘‘explain’’ that each laboratory measurement yields a definite result.
Our construction shows that the quantum model of the EPRB experiments is just one particular

escription of the relevant features of the discrete data. We have argued that compared to other
epresentations of data obtained from EPRB experiments, quantum theory is exceptionally powerful
n that it can represent the relevant features of the data of EPRB thought experiments with many
ifferent settings in terms of only fifteen numbers.
In summary, we have shown that by starting from the discrete data produced by EPRB experi-

ents, all controversies about the meaning of the violation of Bell-type inequalities evaporate and
hat the quantum-theoretical model of the EPRB experiments emerges (not by postulate) as a very
owerful description of the data.
In conclusion, there seem to be two non-compatible alternatives to model physical phenomena:

• In the data-driven approach, the experimental data are considered to be immutable facts.
The first step is to analyze the data without committing to a particular mathematical model
for the process that is imagined to have created the data. The second step is to construct
mathematical models which provide a concise, accurate picture of how the relevant features of
the data change as the conditions under which the experiments have been performed change.
Being data-driven, the applicability of the mathematical model is measured by the degree by
which the model prediction fits (not produces) the data. The quantum-theoretical description
emerges as a powerful, compact, separated, interpretation-free model of the data generated
by EPRB thought experiments.
Alternatively, one can develop event-based computer models that are capable of mimicking
the processes that give rise to the experimental data. Essential for the success of this step is
that the model accounts for all processes, including the data processing part, that are critical
for the experiment to succeed. There is no obstacle for constructing probabilistic models
39



H. De Raedt, M.I. Katsnelson, M.S. Jattana et al. Annals of Physics 453 (2023) 169314

o
a
w
t
t
t

C

M
D
W
D
o
o

D

s

D

A

f
f
s

U
M
V
Q
E
R

and computer models for EPRB laboratory experiments which produce data to which the
quantum-theoretical description of EPRB thought experiments fits very well.

• In the theory-driven approach, it is (often implicitly) assumed that the production of experi-
mental data is governed by a (possibly yet to be discovered) pre-existing mathematical model.
Starting from a set of axioms, this approach proves theorems about these mathematical models
and by assumption, also about the phenomena that we experience with our senses. In the
case of the EPRB experiment, the failure of Bell’s model to describe the experimental data
is regarded as a proof that one or more of the assumptions (e.g., locality, etc.) underlying
the model do not hold in the universe that we experience with our senses. This failure has
given birth to notions such as ‘‘spooky action on a distance’’, ‘‘nonlocality’’, etc., injecting new
elements to the already vast universe of interpretations of quantum theory. The theory-driven
approach leads to endless discussions about the interpretation of the mathematical symbols
used.

If one is mainly interested in modeling natural phenomena, the data-driven approach has some
utstanding merits. If one is mainly interested in discussing ‘‘interpretations’’, the theory-driven
pproach is the method of choice. The choice between these two alternatives depends on one’s
orld view and interests. Summarizing the above discussion of the two non-compatible alternatives
o model physical phenomena, one should exert extreme caution when switching between these
wo alternatives and, in the authors’ opinion, failing to do so is what plagues the interpretation of
he results of EPRB experiments.
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ppendix A. Pairs, triples, quadruples, and octuples

In mathematics, an n-tuple is an ordered list of n elements, denoted by (A, B, . . .). In this paper
e call (A, B) a pair, implicitly assuming it is ordered, a 2-tuple. Similarly, the lists (A, B, C) and
A, B, C,D) are referred to as a triple (3-tuple) or quadruple (4-tuple), and an ordered list of 8
lements is an octuple.

ppendix B. Proof of the model-free inequality for correlations of discrete data

The inequality derived in this section applies to any experiment that produces discrete data,
hich without loss of generality, can always be thought of as being rescaled to lie in the interval

−1,+1]. If the data were real-valued, it is no longer possible to uniquely identify the quadruples
hich are essential for the proof of the inequality. We derive a bound on a certain combination of
orrelations, each one computed from data gathered under different conditions. The nth data item
btained under condition x is denoted by Ax,n for n = 1, . . . ,N where |Ax,n| ≤ 1. Recall that the
ubscript x labels the condition only and does not, in any way, implicitly imply a dependence of
x,n on x in terms of a MM. As before, the symbols A and B represent discrete data.
Inspiration to derive the model-free inequality stems from the standard procedure of demon-

trating a violation of a Bell–CHSH inequality. The latter consists of performing EPRB laboratory
xperiments with four different pairs of settings (a, c), (a, d), (b, c) and (b, d). As mentioned earlier,
ll EPRB laboratory experiments use, e.g. time-coincidence, local time windows, voltage thresholds,
tc. to identify pairs. This results in a further, often substantial reduction of the number of pairs.
urthermore, in practice, the number of observed pairs may depend on the setting. However, data
ets can always be truncated such that the number of pairs of the four sets is the same. Thus, an
PRB laboratory experiment, with or without some post-processing of the data, produces discrete
ata A1,n, etc., for n = 1, . . . ,N in four independent runs of length N . The procedure of how this
ata was obtained is irrelevant for the derivation of the inequality presented in this section.
The data sets obtained for four different conditions denoted by 1, 2, 3 and 4 read

D1 = {(A1,n, B1,n) | |A1,n| ≤ 1, |B1,n| ≤ 1 ; n = 1, . . . ,N}, (B.1a)

D2 = {(A2,n, B2,n) | |A2,n| ≤ 1, |B2,n| ≤ 1 ; n = 1, . . . ,N}, (B.1b)

D3 = {(A3,n, B3,n) | |A3,n| ≤ 1, |B3,n| ≤ 1 ; n = 1, . . . ,N}, (B.1c)

D4 = {(A4,n, B4,n) | |A4,n| ≤ 1, |B4,n| ≤ 1 ; n = 1, . . . ,N}, (B.1d)

here N is the number of pairs. From the discrete data Eq. (B.1), we compute the correlations

C1 =
1
N

N∑
n=1

A1,nB1,n, C2 =
1
N

N∑
n=1

A2,nB2,n, C3 =
1
N

N∑
n=1

A3,nB3,n, C4 =
1
N

N∑
n=1

A4,nB4,n . (B.2)

To simplify the notation somewhat, in this and all other appendices, we use the symbols Cs instead
of E(12)

s for s = 1, 2, 3, 4 to denote correlations.
In general, each contribution to the correlations Eq. (B.2) may take any value in the interval

[−1,+1], independent of the values taken by other contributions, yielding the trivial bound

|C1 ∓ C2| + |C3 ± C4| ≤ 4 . (B.3)

Without introducing a specific model for the process that generates the data, we can derive a
bound that is sharper than Eq. (B.3) by making use of Eq. (N.5). To this end, we first identify the
contributions to C1, C2, C3 and C4 which, after suitable reshuffling of the terms, can be brought in

the form xz ∓ xw + yz ± yw to which Eq. (N.5) applies.
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Unfortunately, writing down the idea of suitable reshuffling in mathematical notation requires
cumbersome notation, possibly giving the wrong impression that the proof that follows is

omplicated. The reader who is not interested in the technicalities of the proof should nevertheless
ead the next paragraph to understand what is meant by ‘‘quadruples’’ and can then jump to the
inal result Eq. (B.9).

We introduce permutations P(.), P̂(.), P̃(.), and P ′(.) of the first N integers and rewrite Eq. (B.2)
as

C1 =
1
N

N∑
n=1

A1,P(n)B1,P(n), C2 =
1
N

N∑
n=1

A2,̂P(n)B2,̂P(n), C3 =
1
N

N∑
n=1

A3,̃P(n)B3,̃P(n),

C4 =
1
N

N∑
n=1

A4,P ′(n)B4,P ′(n) . (B.4)

Obviously, reordering the terms of the sums does not change the value of the sums themselves.
Suppose that we can find permutations P(.), P̂(.), P̃(.), and P ′(.) such that

x = A1,P(1) = A2,̂P(1), y = A3,̃P(1) = A4,P ′(1), z = B1,P(1) = B3,̃P(1), w = B2,̂P(1) = B4,P ′(1), (B.5)

howing that the variables of the octuple (A1,P(1), A2,̂P(1), A3,̃P(1), A4,P ′(1), B1,P(1), B3,̃P(1), B2,̂P(1), B4,P ′(1))
form the quadruple (x, y, z, w), defined by Eq. (B.5). In other words, if we can find P(.), P̂(.), P̃(.), and
P ′(.) such that Eq. (B.5) holds, the original data in terms of octuples exhibits structure that allows
at least that one octuple to be reduced to a quadruple.

From Eq. (B.5), it is clear that by definition, the permutations always interchange pairs of data
(As,n, Bs,n) within a particular data set s = 1, 2, 3, 4, that is the mapping is of the kind (As,n, Bs,n) →

As,n′ , Bs,n′ ), replacing n by n′ for both the A and B simultaneously, for the same value of s. There is no
eshuffling of the items within pairs, as would be the case in for instance (As,n, Bs,n) → (As,n′ , Bs,n′′ )
ith n′

̸= n′′. This is important because if the data pairs have been selected through a time-
oincidence (see Fig. 3) or any other procedure, application of these permutations does not affect
he pairing of events within one particular data set. In other words, the permutations would never
ix up the time tags of data pairs.
Using the triangle inequality and Eq. (N.5b), we have

|C1 ∓ C2| + |C3 ± C4| ≤

⏐⏐⏐⏐⏐ 1N
N∑

n=2

(
A1,P(n)B1,P(n) ∓ A2,̂P(n)B2,̂P(n)

)⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐ 1N
N∑

n=2

(
A3,̃P(n)B3,̃P(n) ± A4,P ′(n)B4,P ′(n)

)⏐⏐⏐⏐⏐
+

1
N

|xz ∓ xw| + |yz ± yw|,

≤
2
N

+

⏐⏐⏐⏐⏐ 1N
N∑

n=2

(
A1,P(n)B1,P(n) ∓ A2,̂P(n)B2,̂P(n)

)⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐ 1N
N∑

n=2

(
A3,̃P(n)B3,̃P(n) ± A4,P ′(n)B4,P ′(n)

)⏐⏐⏐⏐⏐ . (B.6)

From Eq. (B.6) the importance of identifying quadruples is clear. For every quadruple which we can
create by reshuffling data pairs, the contribution to the expression on the left hand side of Eq. (B.6)
is limited in magnitude by two, not by four.

Now assume that we can find permutations Q (.), Q̂ (.), Q̃ (.), and Q ′(.) such that for k =

1, . . . , Kmax,

′ ′
xk = A1,Q (k) = A2,Q̂ (k), yk = A3,Q̃ (k) = A4,Q (k), zk = B1,Q (k) = B3,Q̃ (k), wk = B2,Q̂ (k) = B4,Q (k), (B.7)
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where Kmax ≤ N denotes the largest integer for which we can find these four permutations, that is
Kmax is the maximum number of pairs in each data set that form quadruples. If it is not possible to
find any such quadruple, we have Kmax = 0 by definition.

The choice represented by Eq. (B.7) is motivated by the EPRB experiment, see Fig. 2. In general,
ther choices to define quadruples are possible and may yield different values of the maximum
raction of quadruples. However, if max(|C1 − C2| + |C3 + C4|, |C1 + C2| + |C3 − C4) = 4 − 2∆
possibly up to some statistical fluctuations), as is the case in some of the numerical examples
iscussed below, we may be confident that the choice Eq. (B.7) yields the largest value of ∆ that
an be obtained by reshuffling of the data.
Repeating the steps the yielded Eq. (B.6) Kmax times, we find

|C1 ∓ C2| + |C3 ± C4| ≤
2Kmax

N
+

⏐⏐⏐⏐⏐ 1N
N∑

n=Kmax+1

(
A1,Q (n)B1,Q (n) ∓ A2,Q̂ (n)B2,Q̂ (n)

)⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐ 1N
N∑

n=Kmax+1

(
A3,Q̃ (n)B3,Q̃ (n) ± A4,Q ′(n)B4,Q ′(n)

)⏐⏐⏐⏐⏐
≤

2Kmax

N
+

1
N

N∑
n=Kmax+1

(⏐⏐A1,Q (n)B1,Q (n)
⏐⏐+ ⏐⏐A2,Q̂ (n)B2,Q̂ (n)

⏐⏐
+
⏐⏐A3,Q̃ (n)B3,Q̃ (n)

⏐⏐+ ⏐⏐A4,Q ′(n)B4,Q ′(n)
⏐⏐)

≤
2Kmax

N
+

4(N − Kmax)
N

= 4 − 2∆, (B.8)

where 0 ≤ ∆ = Kmax/N ≤ 1 is the ratio of the maximum number of quadruples Kmax to the number
of pairs N , a measure for the ‘‘hidden’’ structure in the collection of octuples.

In summary, we have proven that independent of the origin of the four sets of discrete data
Eq. (B.1), the correlations computed from these data sets must satisfy the ‘‘model-free’’ inequality

|C1 − C2| + |C3 + C4| ≤ 4 − 2∆ , |C1 + C2| + |C3 − C4| ≤ 4 − 2∆ , (B.9)

where ∆ = Kmax/N is the fraction of maximum number of quadruples one can find by reshuffling
the original data set of octuples. Appealing to the triangle inequality once more, it follows from
Eq. (B.9) that

SCHSH = max
(i,j,k,l)∈π4

⏐⏐Ci − Cj + Ck + Cl
⏐⏐ ≤ 4 − 2∆, (B.10)

where πn denotes the set of all permutations of (1, . . . , n) and SCHSH denotes the Bell–CHSH function.
The same procedure can be used to derive inequalities for the correlations computed from three

nstead of four data sets. Alternatively, following Bell [93], we can obtain these inequalities by
eplacing C4 in Eq. (B.9) by one and we have

|C1 + C2| ≤ 3 − 2∆+ C3, |C1 − C2| ≤ 3 − 2∆− C3 . (B.11)

rom Eq. (N.6) it then follows that
⏐⏐Ci ± Cj

⏐⏐ ≤ 3 − 2∆± Ck for all (i, j, k) ∈ π3, are the appropriate,
odel-free ‘‘Bell inequalities’’ for discrete data.
Inequalities Eqs. (B.9)–(B.11) cannot be violated by data of a (real or thought) EPRB experiment,

nless the mathematical apparatus that we use is inconsistent (a possibility which we do not
onsider). For example, assume that an EPRB laboratory experiment yields data for which SCHSH > 2,
hat is the data violate the Bell–CHSH inequality. Then we can use Eq. (B.9) to find that ∆ ≤ 2 −

CHSH/2, implying that the number of quadruples in the sets Eq. (B.1) does not exceed (2−SCHSH/2)N .

n the basis of the experimental data only, this is all one can say with certainty.
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It should be noted that we have not proven that all the octuples in the sets Eq. (1) can be
eshuffled to form quadruples if the correlations satisfy |C1 ∓ C2|+|C3 ± C4| < 2. In fact, it is
asy to construct simple counterexamples. For instance, if D1 = {(+1,−1), (+1,+1)}, D2 =

(−1,−1), (−1,+1)}, D3 = {(−1,−1), (+1,−1)}, and D4 = {(+1,+1), (−1,−1)}, then C1 = C2 =

3 = 0 and C4 = 1, yet it is impossible to reshuffle the data such that they can be extracted from
wo quadruples. If we assume that the averages of A1 and A2, A3 and A4, B1 and B3, B2 and B4 are
he same and |C1 ∓ C2|+|C3 ± C4| < 2, our numerical experiments suggest that almost all of them
an be reshuffled to create quadruples (see examples below). This observation in the realm of data
an be understood in terms of Fine’s theorem [47], see also Section 11.4.
We emphasize that inequalities Eqs. (B.9)–(B.11) do not depend on how the data was generated

nd/or processed and hold in general, independent of (any model for) the process that generates
he data.

.1. The Eberhard inequality for discrete data

The EPRB experiments reported in Refs. [34,35] have only one detector in each of the two stations
see Fig. 2). To account for the photons that have been detected and would have been detected by
he missing detectors and also to account for undetected photons, the events are classified in two
roups. Adopting the notation used in Refs. [34,35], the events that are recorded by the detector
nd all other events are given the label ‘‘+’’ and ‘‘0’’, respectively. If desired, the averages and the
orrelations can be calculated as usual (see Eq. (2)) by assigning the values x, y = +1 to the
ormer and x, y = −1 to the latter class of events. Of course, the correlation obtained from these
xperiments may be different from those used to compute the correlations appearing in inequalities
qs. (B.9)–(B.11).
In the EPRB experiments reported in Refs. [34,35], the number of interest is the combination of

ounts [121]

EBERdata = N++

1 − N+0
2 − N0+

3 − N++

4 . (B.12)

he rationale for considering EBERdata is that if the data is generated in the form of quadruples or
or instance, by a CM of a Bell-type (counterfactual definite) model, we have EBERdata ≤ 0.

We derive the appropriate, model-free upper bound to EBERdata by proceeding in a manner
nalogous to the one used to derive inequalities Eqs. (B.9)–(B.11). First, we introduce two-valued,
nteger variables Xs,n and Ys,n to represent the detection of an event at stations 1 and 2, respectively.
s before, the subscript s = 1, 2, 3, 4 refers to the data sets obtained under the conditions (a, c),
a, d), (b, c), and (b, d), respectively. If station 1(2) reports a ‘‘+’’ event for the nth pair, we set
s,n = 1 (Ys,n = 1). Otherwise, we set Xs,n = 0 (Ys,n = 0). In terms of these variables we have

EBERdata =

N∑
n=1

[
X1,nY1,n − X2,n(1 − Y2,n) − (1 − X3,n)Y3,n − X4,nY4,n

]
. (B.13)

If X1,n = X2,n, X3,n = X4,n, Y1,n = Y3,n and Y2,n = Y4,n, as it would be if these data were generated
n the form of a quadruple or by a CM of an LHVM, simply enumerating all sixteen possibilities
hows that −1 ≤ X1,nY1,n − X2,n(1 − Y2,n) − (1 − X3,n)Y3,n − X4,nY4,n ≤ 0. In general, we have

−3 ≤ X1,iY1,i′ − X2,j(1 − Y2,j′ ) − (1 − X3,k)Y3,k′ − X4,lY4,l′ ≤ 1.
Next, as before, we assume that there exist permutations Q (.), Q̂ (.), Q̃ (.), and Q ′(.) such that for

ll k = 1, . . . , Kmax,

X1,Q (k) = X2,Q̂ (k), X3,Q̃ (k) = X4,Q ′(k), Y1,Q (k) = Y3,Q̃ (k), Y2,Q̂ (k) = Y4,Q ′(k) . (B.14)

f we can find these four permutations, we have identified Kmax pairs in each data set that can be
epresented by Kmax quadruples. If it is not possible to find any such quadruple, we have Kmax = 0
y definition. Note that the permutations Q (.), Q̂ (.), Q̃ (.), and Q ′(.) and the value of Kmax are not
ecessarily the same as in case where the involved data has been obtained by analyzing the data
f EPRB experiments with two detectors per station.
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Writing Eq. (B.13) as

EBERdata =

Kmax∑
k=1

[
X1,Q (k)Y1,Q (k) − X2,Q̂ (1 − Y2,Q̂ (k)) − (1 − X3,Q̃ (k))Y3,Q̂ (k) − X4,Q ′(k)Y4,Q ′(k)

]
+

N∑
k=Kmax+1

[
X1,Q (k)Y1,Q (k) − X2,Q̂ (1 − Y2,Q̂ (k))

−(1 − X3,Q̃ (k))Y3,Q̂ (k) − X4,Q ′(k)Y4,Q ′(k)
]
, (B.15)

and using the respective lower and upper bounds for each of the terms in the sums we obtain

−3(N − Kmax) − Kmax ≤ EBERdata ≤ N − Kmax, (B.16)

or, expressed in terms of the fraction of quadruples,

−3 + 2∆ ≤
EBERdata

N
≤ 1 −∆, (B.17)

here the value of ∆ is not necessarily the same as the value of ∆ obtained by analyzing the data
f EPRB experiments with two detectors per station. This is because the data of the X ’s and Y ’s

obtained by performing EPRB experiments with one detector per station are not the same as the
data of the A’s and B’s obtained by performing EPRB experiments with two detectors per station. If
all the data pairs that contribute to N++

1 , N+0
2 , N0+

3 and N++

4 can be reshuffled to form quadruples,
e have ∆ = 1 and Eq. (B.17) becomes the CH inequality EBERdata/N ≤ 0 [95] for discrete data.
As an illustration, we take the data reported in the Supplemental material of Ref. [41]. The

alid trials for the four settings are N1 = 875 683 790, N2 = 875 518 074, N3 = 875 882 007, and
4 = 875 700 279 such that the total number of counts Ntot = N1+N2+N3+N4 = 3 502 784 150 [41].
fter post-processing by adjusting voltage thresholds, the corresponding photon counts are N++

1 =

41 439, N+0
2 = 67 941, N0+

3 = 58 742 and N++

4 = 8392 [41].
To estimate ∆ from the data provided in Ref. [41], we have to be able to truncate three of the

our data sets such that they have the same number of pairs N . In principle, this requires processing
the four full sequences of individual events. Fortunately, in view of the large number of events, this
is not necessary if we proceed as follows. We define N = (N1 + N2 + N3 + N4)/4 and compute
N++

1 =
⌊
NN++

1 /N1
⌉

= 141 441 = N++

1 + 2 where ⌊x⌉ denotes the nearest integer to x. Similarly,
we obtain N̂+0

2 =
⌊
NN+0

2 /N2
⌉

= 67 955 = N+0
2 + 14, N̂0+

3 =
⌊
NN0+

3 /N3
⌉

= 58 730 = N0+
3 − 12, and

N++

4 =
⌊
NN++

4 /N4
⌉

= 8392 = N++

4 . Clearly, the errors made by using the procedure of estimates
N , N̂++

1 etc. are negligible. Therefore, to a very good approximation, we have

EBERdata

N
≈

N̂++

1 − N̂+0
2 − N̂0+

3 − N̂++

4

N
= 7.27 × 10−6, (B.18)

he same as the value of J reported in Ref. [41]. From Eq. (B.17) it then follows that∆ ≲ 0.99999273.
In Ref. [41], the tiny number of 7.27 × 10−6, an order of magnitude smaller than the expected

statistical error of 1/
√
N ≈ 3 × 10−5, is taken as strong evidence that the data cannot be

escribed by an LHVM of the Bell-type [41,42]. Moreover, the data was obtained by adjusting voltage
hresholds [41,42], a process that is not accounted for in the LHVM that is being rejected but is
ssential to create data such that N̂++

1 − N̂+0
2 − N̂0+

3 − N̂++

4 > 0. Clearly, for the reasons explained
n Section 6, the logic that leads to this conclusion needs to be revised.

On the basis of the experimental data, the correct conclusion one can draw from∆ ≲ 0.99999273
s that a very small fraction of all the selected pairs of photon events cannot be rearranged to create
uadruples.

.2. The Clauser-Horn inequality for discrete data

Given the same data sets, bounds on CHdata, also expressing structure in the data, can be derived
as follows. Consider the expression (or similar expressions with permutations of the subscripts
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(1,2,3,4))

CHdata(x, y) = f1(x, y) − f2(x, y) + f3(x, y) + f4(x, y)

−
1
2

∑
z=−1,1

(f1(x, z) − f2(x, z) + f3(x, z) + f4(x, z) + f1(z, y)

−f2(z, y) + f3(z, y) + f4(z, y)) , (B.19)

here x, y = ±1 and the frequencies fs(x, y) for s = 1, 2, 3, 4 are given by Eq. (4). Recall that
, y = 1(−1) correspond to events of type ‘‘+’’(‘‘0’’). Expressing these frequencies in terms of their
oments, that is, using Eq. (5d) yields

CHdata(x, y) = −
1
2

+
xy
4

(
E(12)
1 − E(12)

2 + E(12)
3 + E(12)

4

)
. (B.20)

dopting the notation for the correlations adopted in this, we have

CHdata(x, y) = −
1
2

+
xy
4
(C1 − C2 + C3 + C4) , (B.21)

nd using Eq. (B.10), we obtain

−1 −
1 −∆

2
≤ CHdata(x, y) ≤

1 −∆

2
. (B.22)

The relation between CHdata(x, y) and the CH inequality becomes clear if we assume that E(1)
1 =

E(1)
2 , E(2)

1 = E(2)
3 , E(1)

3 = E(1)
4 , and E(2)

2 = E(2)
4 . This assumption complies with the idea of a description

in terms of a joint distribution for EPRB experiments with four different pairs of settings, see
Section 11.4, or in terms of Bell’s model Eq. (35). With this assumption, Eq. (B.22) reduces to

CHdata(x, y) = f1(x, y) − f2(x, y) + f3(x, y) + f4(x, y) −

∑
z=−1,1

(f3(x, z) + f3(z, y)) . (B.23)

Assuming that all the data originates from a set of quadruples we have ∆ = 1, identifying
(1) = (a, c), (2) = (a, d), (3) = (b, c), and (4) = (b, d) as before, and adopting the notation used by
CH, Eq. (B.22) becomes

−1 ≤ Pxy(a, c) − Pxy(a, d) + Pxy(b, c) + Pxy(b, d) − Px(b) − Py(c) ≤ 0, (B.24)

which, for every pair (x, y), is the CH inequality in its usual form [95]. Note that the assumption
made to obtain Eq. (B.24) implies that E(1)

1 , E(1)
3 , E(2)

1 , and E(2)
2 only depend on a, b, c, and d,

espectively, justifying writing the marginals with respect to the variables x and y as Px(b) and
y(c), respectively.
Using Px=+(b) =

∑
u=+,− P+u(b, d) and Py=+(c) =

∑
u=+,− Pu+(b, c), Eq. (B.24) becomes

−1 ≤ P++(a, c) − P++(a, d) − P−+(b, c) − P+−(b, d) ≤ 0, (B.25)

violation of the right-hand side of Eq. (B.25) by data being interpreted as the break-down of local
ealism [41,42].

In conclusion, as in the case of the Bell–CHSH inequality, also the CH inequalities Eqs. (B.24)
nd (B.25) are of little use to draw conclusions from the analysis of discrete data originating from
numerical) experiments, because for such data, the appropriate inequality is Eq. (B.17) with CHdata
iven by Eq. (B.12), not inequality Eq. (B.25) which has been derived within the context of a
M which assumes counterfactual definiteness. Being model-free mathematical facts, inequalities
qs. (B.17) and (B.22) cannot be violated.

.3. Lower bounds to the fraction of quadruples

It is easy to derive lower bounds to the fraction of quadruples ∆ if all the A’s and B’s that appear
n Eq. (B.1) take values ±1 only. The most naive method to compute such a lower bound ignores
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the possibility of reshuffling the data such that the correlations remain the same and simply counts
the number of times the four conditions

A1,k = A2,k, A3,k = A4,k, B1,k = B3,k, B2,k = B4,k . (B.26)

re satisfied. We denote the faction of quadruples thus obtained by ∆̂. Obviously, calculating ∆̂ is
easy and computationally inexpensive.

With similar computational effort, we can compute a better lower bound as follows. First we
note that

C1 =
1
N

(
n(1)

++ + n(1)
−− − n(1)

+− − n(1)
−+

)
, (B.27)

here n(1)
++, n

(1)
−−, n

(1)
+−, and n(1)

−+ are the numbers of times A1,n = +1 and B1,n = +1, A1,n = −1
nd B1,n = −1, A1,n = +1 and B1,n = −1, and A1,n = −1 and B1,n = +1, respectively.
xpressions similar to Eq. (B.27) hold for C2, C3, and C4. The number of quadruples that can

be formed with all A’s and B’s equal to +1 is given by N++ = min
(
n(1)

++, n
(2)
++, n

(3)
++, n

(4)
++

)
.

enoting N−− = min
(
n(1)

−−, n
(2)
−−, n

(3)
−−, n

(4)
−−

)
, N+− = min

(
n(1)

+−, n
(2)
+−, n

(3)
+−, n

(4)
+−

)
, and N−+ =

min
(
n(1)

−+, n
(2)
−+, n

(3)
−+, n

(4)
−+

)
, it follows immediately that the fraction of quadruples that can be

formed by reshuffling must be greater than or equal to

∆̃ =
N++ + N−− + N+− + N−+

N
, (B.28)

hat is ∆̃ is a lower bound to ∆ (0 ≤ ∆̃ ≤ ∆ ≤ 1). Furthermore, it is obvious that ∆̂ ≤ ∆̃, where ∆̂
has been obtained by imposing the condition Eq. (B.26) and ∆̃ is given by Eq. (B.28).

Therefore, we have

SCHSH ≤ |C1 ∓ C2| + |C3 ± C4| ≤ 4 − 2∆ ≤ 4 − 2∆̃ ≤ 4 − 2∆̂ ≤ 4, (B.29)

here the upper bound of four is a mathematical triviality.

.4. Computing the maximum number of quadruples

The technicalities of the proof of Eq. (B.9), involving four permutations of N numbers, are of little
se when we actually want to find all quadruples in the data sets Eq. (B.1). Indeed, enumerating all
N!)4 possibilities by a computer quickly becomes prohibitive as N increases (for instance (10!)4 ≈

73 × 1024). However, the proof of the model-free inequality Eq. (B.9) only requires the existence
f a maximum number of quadruples, the actual value of this maximum being irrelevant for the
roof.
Nevertheless, it is instructive to write a computer program that uses uniform pseudo-random

umbers to generate the data sets Eq. (B.2) and finds the number of quadruples. By specifying
n algorithm that generates the data, we have defined a CM. At first sight, finding the value of
itself may require O(N!

4) arithmetic operations. Fortunately, the problem of determining the
raction of quadruples ∆ can be cast into an integer linear programming problem which, in the
ost relevant case for which the A’s and B’s take values ±1 only, seems easy to solve by considering

he associated linear programming problem with real-valued unknowns. In practice, we solve the
atter by standard optimization techniques [122] and then check that the solution takes integer
alues only, which it always seems to do (an observation for which we have no proof). In this case,
he solution of the linear programming problem is also the solution of the integer programming
roblem. We have implemented the computer program in Mathematica

®
.

The key step is to list all possible sixteen combinations of A’s and B’s that form quadruples and
o attach a variable to each of these combinations, as shown in Table B.3. In terms of the ni’s, the
umbers of (A, B) pairs in each data set is given by the expressions listed in Table B.4.
Next, we simply count the number of times a pair (±1,±1) occurs in the data sets D1, D2, D3 and
4, and denote the sixteen numbers thus obtained by N1(+1,+1),N1(+1,−1), . . . ,N4(+1,−1),
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Table B.3
Lists of all possible combinations of the pairs of data which form quadruples, written
in a slightly different notation to emphasize the quadruple structure. Given the data
sets D2 , D3 and D4 , the optimization task is to find the numbers mi ≥ 0 for
i = 0, . . . , 15 that maximize the number of quadruples.

(B1, A1) (A2, B2) (B4, A4) (A3, B3)

m0 (+1,+1) (+1,+1) (+1,+1) (+1,+1)
m1 (−1,+1) (+1,+1) (+1,+1) (+1,−1)
m2 (+1,+1) (+1,+1) (+1,−1) (−1,+1)
m3 (−1,+1) (+1,+1) (+1,−1) (−1,−1)
m4 (+1,+1) (+1,−1) (−1,+1) (+1,+1)
m5 (−1,+1) (+1,−1) (−1,+1) (+1,−1)
m6 (+1,+1) (+1,−1) (−1,−1) (−1,+1)
m7 (−1,+1) (+1,−1) (−1,−1) (−1,−1)
m8 (+1,−1) (−1,+1) (+1,+1) (+1,+1)
m9 (−1,−1) (−1,+1) (+1,+1) (+1,+1)
m10 (+1,−1) (−1,+1) (+1,−1) (−1,+1)
m11 (−1,−1) (−1,+1) (+1,−1) (−1,−1)
m12 (+1,−1) (−1,−1) (−1,+1) (+1,+1)
m13 (−1,−1) (−1,−1) (−1,+1) (+1,−1)
m14 (+1,−1) (−1,−1) (−1,−1) (−1,+1)
m15 (−1,−1) (−1,−1) (−1,−1) (−1,−1)

Table B.4
Total counts of different pairs (A, B) belonging to the set of quadruples.
(A, B) n1(A1, B1) n2(A2, B2) n3(A3, B3) n4(A4, B4)

(+1,+1) m0 + m2 + m4 + m6 m0 + m1 + m2 + m3 m0 + m4 + m8 + m12 m0 + m1 + m8 + m9
(+1,−1) m1 + m3 + m5 + m7 m4 + m5 + m6 + m7 m1 + m5 + m9 + m13 m4 + m5 + m12 + m13
(−1,+1) m8 + m10 + m12 + m14 m8 + m9 + m10 + m11 m2 + m6 + m10 + m14 m2 + m3 + m10 + m11
(−1,−1) m9 + m11 + m13 + m15 m12 + m13 + m14 + m15 m3 + m7 + m11 + m15 m6 + m7 + m14 + m15

N4(−1,−1). These numbers completely determine the values of the correlations C1, C2, C3, and C4,
.g., C1 = (N1(+1,+1) − N1(+1,−1) − N1(−1,+1) + N1(−1,−1))/N . The same sixteen numbers
erve as input to the linear optimization problem. Denoting the number of pairs (A, B) in data set
k that do not belong to the set of quadruples by uk(A, B) ≥ 0, we must have

Nk(A, B) = nk(A, B) + uk(A, B), N =

∑
x,y=±1

Nk(x, y), U =

∑
x,y=±1

uk(x, y), (B.30)

or k = 1, 2, 3, 4 and all pairs (A, B) = (±1,±1). Note that U cannot depend on k because the
number of pairs which do not belong to the set of quadruples must be the same for all four data
sets.

The final step is then to minimize the number of pairs which do not belong to the set of
quadruples, that is we solve the linear minimization problem

min

(
U = N −

15∑
i=0

mi

)
(B.31)

in 32 unknowns (the mi’s and uk(A, B)’s), subject to 33 inequality constraints (mi, uk(±1,±1),U ≥ 0
or all i, k) and 16 equality constraints (see Eq. (B.30)). For all cases that we have studied, the linear
rogramming solver yields integer-valued solutions only.
The results of several numerical experiments using N = 1 000 000 pairs per data set can be

ummarized as follows:

• If the A’s and B’s are generated in the form of quadruples all taking random values ±1, the
program returns ∆ = 1, |C1 − C2| + |C3 + C4| = 0.00063, and |C1 + C2| + |C3 − C4| = 0.0028
such that Eq. (B.9) is satisfied.
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• If all A’s and B’s take independent random values ±1, the C ’s are approximately zero. We have
|C1 ∓ C2|+ |C3 ± C4| ≤ 4−2∆ = 2(1+ ϵ) where 1 ≫ ϵ ≥ 0 reflects the statistical fluctuations
in N1(+1,+1), N1(+1,−1), . . . , N4(+1,−1), N4(−1,−1). This, perhaps counter intuitive, result
may be understood by referring to Eq. (B.29). If N is very large, we may (in the case at hand)
expect that N1(+1,+1) ≈ N1(+1,−1) ≈ . . . ≈ N4(+1,−1) ≈ N4(−1,−1) ≈ N/4. From
Eq. (B.28) it then follows that ∆̃ = 1 − ϵ. In our numerical experiment, ϵ = 0.002.

• If the pairs (A1,i, B1,i), (A2,j, B2,j), (A3,kB3,k), and (A4,lB4,l) are generated randomly with frequen-
cies (1 − c1A1,iB1,i)/4, (1 − c2A2,jB2,j)/4, (1 − c3A3,kB3,k)/4, and (1 − c4A4,lB4,l)/4, respectively,
the simulation mimics the case of the correlation of two spin-1/2 objects in the singlet state
if we choose c1 = −c2 = c3 = c4 = 1/

√
2. Recall that in this particular case, quantum theory

yields max (|C1 ∓ C2| + |C3 ± C4|) = 2
√
2 ≈ 2.83 [98], see also Section 11.2.

Generating four times one million independent pairs, we obtain ∆̂ ≈ 0.047, ∆̃ ≈ 0.292,
∆ ≈ 0.585, SCHSH = |C1 − C2| + |C3 + C4| ≈ 2.83 and 4 − 2∆ ≈ 2.83, demonstrating that
the value of the quantum-theoretical upper bound 2

√
2 is reflected in the maximum fraction

of quadruples that one can find by reshuffling the data.
• Same as in the previous case except that we use the probabilistic model of Section 11.5 as

the basis for the CM to generate pairs of data for the case d = 6 for which SCHSH ≈ 3.20 >
2
√
2 ≈ 2.83, showing that these data cannot be described by a quantum-theoretical model

of two spin-1/2 objects. Choosing c1 = −c2 = c3 = c4 = 0.80 and generating four times one
million independent pairs, we obtain SCHSH = |C1 − C2|+ |C3 + C4| ≈ 3.20 and 4−2∆ ≈ 3.20.

• Same as in the previous case except that we consider the case d = 8 for which SCHSH ≈ 3.34 >
2
√
2 ≈ 2.83, showing that these data cannot be described by a quantum-theoretical model

of two spin-1/2 objects. Choosing c1 = −c2 = c3 = c4 = 0.83 and generating four times one
million independent pairs, we obtain SCHSH = |C1 − C2|+ |C3 + C4| ≈ 3.34 and 4−2∆ ≈ 3.34.

• In Appendix B.1, we have used the data of the ‘‘Significant-Loophole-Free Test of Bell’s Theorem
with Entangled Photons’’ experiment [41] to estimate that the fraction of quadruples that can
be created by reshuffling the data is ∆ ≲ 0.99999273. Using the quantum state (|HV ⟩ +

r|VH⟩)/
√
1 + r2 assumed to describe the ideal experiment [41], we obtain SCHSH ≈ 2.34 > 2

and (see Eq. (B.17)) (N++(a, c) − N++(b, d) − N−+(b, c) − N+−(a, d))/N ≈ 0.085 > 0, where
a, b, c, and d correspond to the angles 94.4◦, 62.4◦, −6.5◦, and 25.5◦, respectively, and r =

−2.9. Generating four times one million independent pairs (A1,i, B1,i), (A2,j, B2,j), (A3,kB3,k), and
(A4,lB4,l) with frequencies corresponding to the quantum-theoretical probabilities, we obtain
∆̂ ≈ 0.275, ∆̃ ≈ 0.491, ∆ ≈ 0.829, such that 4 − 2∆ ≈ 2.34 ≈ SCHSH. As mentioned
in Appendix B.1, the value of ∆ ≈ 0.829 obtained from the quantum-theoretical model does
not necessarily relate to the value ∆ ≲ 0.99999273 obtained by analyzing the experimental
data.

• In the case of Bell’s modified toy model (see Appendix L.1) for which C(a, c) = −(1/2) cos(a−c)
or the probabilistic model of Section 11.5 with d = 0 or W > T0, we have SCHSH =

√
2.

Choosing c1 = −c2 = c3 = c4 = 1/2
√
2 and generating four times one million independent

pairs, we obtain SCHSH = |C1 − C2| + |C3 + C4| ≈ 1.42 and 4 − 2∆ ≈ 2.00.

xcept in the first case, the values of ∆ quoted in the other cases fluctuate a little if we repeat the
= 1 000 000 simulations with different random numbers. Except for the first, second, and last

ase, the data suggest that inequality Eq. (B.9) can be saturated.

.5. Illustration: Extended EPRB experiment

Fig. B.10 shows the layout of an extended Einstein–Podolsky–Rosen–Bohm (EEPRB) experiment
ith spin-1/2 particles [56,97]. In this idealized experiment, all Stern–Gerlach magnets perform
elective (filtering) measurements [6,123]. Selective measurements allow us to attach an attribute
ith definite value (e.g. the direction of the magnetic moment) to the particle. For instance,
ssuming that SG1, SG3 and SG4 perform ideal selective measurements, a particle leaving SG1 along
ath S = +1 (S = −1) will always leave SG3 (SG4) along path S = +1 (S = −1) if b = a. In this
1 1 2 2
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Fig. B.10. Layout of the extended Einstein–Podolsky–Rosen–Bohm thought experiment with spin-1/2 particles [56,97]. A
source is emitting a pair of magnetic particles in two spatially separated directions, directed towards observation station
1 and 2. The observation station 1 (2) contains three identical Stern–Gerlach magnets SG1, SG3, and SG4, (SG2, SG5, and
SG6) with their uniform field component along the directions a, b, and b (c, d, and d), respectively. Particles leaving
G3, . . . ,SG6 are registered by identical, ideal detectors (not shown). The binary variables xi,j = 0, 1 for i = 1, 2, 3, 4 and
= 1, 2 indicate which of the four detectors at the left (j = 1) and right (j = 2) fire. For each incoming particle, only
ne of the detectors in station 1 and only one of the detectors in station 2 fires, implying that for j = 1, 2, only one
f x1,j , x2,j , x3,j , and x4,j can be nonzero. For each pair of particles emitted by the source, this experiment produces the
uadruple (S1, S2, S3, S4).

ase, the value of this attribute (called spin in quantum theory) is given by S1. The same procedure
s used to attach attributes to particles leaving the other Stern–Gerlach magnets.

As only one of x1,1, x2,1, x3,1, and x4,1 and only one of x1,2, x2,2, x3,2, and x4,2 can be nonzero (see
lso Fig. B.10), the four variables

S1 = x1,1 + x2,1 − x3,1 − x4,1,
S2 = x1,1 − x2,1 + x3,1 − x4,1,
S3 = x1,2 + x2,2 − x3,2 − x4,2,

S4 = x1,2 − x2,2 + x3,2 − x4,2, (B.32)

an only take values +1 or −1. Clearly, S1 and S2 (S3 and S4) encode, uniquely, manner, the path
hat the left (right) going particle took. The four variables Eq. (B.32) form a quadruple (S1, S2, S3, S4)
which completely describes the outcome of the experiment for each pair of particles emitted by the
source.

Next, we attach a pair label n to the S’s and compute correlations according to

Kij =
1
N

N∑
n=1

Si,nSj,n . (B.33)

ecause the EEPRB experiment generates quadruples only, ∆ = 1. Therefore, it follows from
q. (B.9) that independent of the directions a, b, c and d, we must have⏐⏐Kik − Kil + Kjk + Kjl

⏐⏐ ≤ |Kik − Kil| +
⏐⏐Kjk + Kjl

⏐⏐ ≤ 2, (i, j, k, l) ∈ π4 . (B.34)

One run of the extended EPRB experiment yields enough data to compute all possible correla-
tions of the four S’s. For instance, we have K13 = Cac, K14 = Cad, K23 = Cbc, and K24 = Cbd, showing
that one run of the extended EPRB experiment suffices to compute all the correlations that would

be obtained by four runs of the EPRB experiment for the conditions (a, c), (a, d), (b, c), and (b, d). Of
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course, the essential difference between these two experiments is that the former always generates
uadruples (S1,n, S2,n, S3,n, S4,n) whereas the latter not necessarily does.
In conclusion, if the four correlations that appear in the Bell–CHSH inequality are obtained by

erforming the EEPRB experiment, we have

SCHSH ≤ 2, (B.35)

howing that these correlations can never violate the Bell–CHSH inequality [56,97] even though
ll pair-wise correlations are given by the quantum-theoretical description in terms of the singlet
tate.

ppendix C. Plausibility versus mathematical probability

Plausible reasoning is concerned with relating the truth of propositions given the truth of
ther propositions [103]. The key concept is the plausibility, denoted by a real number p(A|B),
uantifying that proposition A is true conditional on proposition B being true. Logical inference is the
athematical framework, a set of rules, by which we perform calculations with plausibilities. Logical

nference allows us to reason in a logically consistent manner which is both unambiguous and
ndependent of the individual, in particular if there are elements of uncertainty in the description.
or a detailed discussion of the foundations of plausible reasoning, its relation to Boolean logic and
he derivation of the rules of logical inference, see Refs. [7,104,105,124,125]. It can be shown that
lausibilities may be chosen to take values in the range [0, 1] and obey the rules [7,104,105,124,125]

a. p(A|Z) + p(Ā|Z) = 1 where Ā denotes the negation of proposition A, and Z is a proposition
assumed to be true.

b. p(AB|Z) = p(A|BZ)p(B|Z) = p(B|AZ)p(A|Z) where the ‘‘product’’ BZ denotes the logical product
(conjunction) of the propositions B and Z , that is the proposition BZ is true if both B and Z
are true. Defining a plausibility for a proposition conditional on the conjunction of mutual
exclusive propositions is regarded as nonsensical.

c. p(AĀ|Z) = 0 and p(A + Ā|Z) = 1 where the ‘‘sum’’ A + B denotes the logical sum (inclusive
disjunction) of the propositions A and B, that is the proposition A + B is true if either A or
B or both are true. These two rules show that Boolean algebra is contained in the algebra of
plausibilities.

The rules (a–c) are unique. Any other rule which applies to plausibilities represented by real
numbers and is in conflict with rules (a–c) will be at odds with common-sense reasoning and
consistency [7,124,125].

‘‘Mathematical probability’’ refers to the key concept in Kolmogorov’s axiomatic framework of
probability theory [3]. Clearly, the rules (a–c) are identical to those of the calculus of probability
theory [3,126,127]. However, logical inference does not involve concepts such as set theory, sample
spaces, random variables, probability measures, countable (or finite) additivity, etc., which all are
essential to the mathematical foundation of probability theory [3,126,127]. Perhaps most important
is that in general, the logical inference approach does not require (but can also deal with) a set of
elementary events or propositions into which the propositions under scrutiny can be resolved.

Appendix D. Solution of the logical inference problem

Expressing the requirements that the Fisher information Eq. (12) should be independent of θ ,
positive and minimal [23] we have

∂ IF(θ )
∂θ

=
2

1 − E2
12(θ )

∂E12(θ )
∂θ

[
∂2E12(θ )
∂θ2

+
E12(θ )

1 − E2
12(θ )

(
∂E12(θ )
∂θ

)2
]

= 0 . (D.1)

he solution ∂E12(θ )/∂θ = 0 can be discarded because then IF(θ ) = 0, corresponding to the
ninteresting case in which the correlation between the x and y does not change with θ . As
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−1 ≤ E12(θ ) ≤ +1 (otherwise Eq. (11) does not represent a plausibility), we may substitute
E12(θ ) = cos g(θ ) in the expression in the right brackets and obtain

∂2E12(θ )
∂θ2

+
E12(θ )

1 − E2
12(θ )

(
∂E12(θ )
∂θ

)2

= − sin g(θ )
∂2g(θ )
∂θ2

= 0, (D.2)

f which the only nontrivial solution reads g(θ ) = uθ+ϕ where u and ϕ are constants of integration.
ubstituting E12(θ ) = cos(uθ + ϕ) in Eq. (12), we obtain IF(θ ) = u2, independent of θ , as expected.
oreover, for n any integer, θ + 2nπ describes the same experiment with a · c = cos θ . Therefore,
e must have E12(θ ) = E12(θ+2nπ ), implying that u = n where n is a positive integer (we exclude
= 0 because then E12(θ ) does not depend on θ ) and we have

E12(θ ) = cos(nθ + ϕ), IF(θ ) = n2, n = 1, 2, . . . . (D.3)

ppendix E. Bell’s proof of his theorem

In the first proof of his theorem [43], Bell explicitly used the assumption of perfect anticorrelation
o derive an inequality which is slightly different from Eq. (N.9a). The theorem then follows from
contradiction derived by using this inequality. Adopting Bell’s notation (but omitting the bars),
ritten in full detail Eq. (N.9a) reads⏐⏐⏐⏐∫ A(a, λ)B(c, λ)µ(λ) dλ±

∫
A(a, λ)B(d, λ)µ(λ) dλ

⏐⏐⏐⏐ ≤ 1 ±

∫
B(c, λ)B(d, λ)µ(λ) dλ . (E.1)

Let us temporarily allow for the idea that data and a model thereof live in the same universe.
f we were to insist that the functions A(a, λ), B(c, λ), and B(d, λ), living in the realm of the MM,
ap one-to-one to the outcomes of the EPRB laboratory experiment, we face two problems. In
q. (E.1) and also in Bell’s original proof, A(a, λ), B(c, λ), B(d, λ) ∈ [−1,+1] and as the outcomes
ake values ±1 only, the mapping between the real numbers and the discrete data does not exist.
et us therefore consider the special case that A(a, λ), B(c, λ), B(d, λ) = ±1. Then, the mapping
xists, at least mathematically.
With the EPRB setup in mind (see Fig. 2), A(a, λ) = ±1 represents data collected on, say the left

ide whereas B(c, λ) = ±1 and B(d, λ) = ±1 would represent data collected on the opposite side.
learly, this creates an apparent conflict because in an EPRB laboratory experiment we cannot have
ne side collecting both B(c, λ) = ±1 and B(d, λ) = ±1 simultaneously if c ̸= d. However, from the
iewpoint of data collected in the EPRB laboratory experiment, there is no conflict at all. Performing
he experiment with settings (a, c) yields data for A(a, λ) and B(c, λ). Likewise, performing the
xperiment with settings (a, d) and the same set of λ’s as used in the first experiment yields data
or A(a, λ) and B(d, λ). From these data we certainly can compute (approximations to) the three
ntegrals in Eq. (E.1), even though we cannot perform an experiment to measure B(c, λ) and B(d, λ)
imultaneously. This apparent conflict illustrates once more that empirical data and a model thereof
o not live in the same universe.
Bell’s proof does not suffer from the named conflict. Bell wrote [43,93]∫

A(a, λ)B(c, λ)µ(λ) dλ−

∫
A(a, λ)B(d, λ)µ(λ) dλ =

∫
A(a, λ)B(c, λ) (1 + A(c, λ)B(d, λ))

µ(λ) dλ

−

∫
A(a, λ)B(d, λ) (1 + A(c, λ)B(c, λ))

µ(λ) dλ . (E.2)

Note that the integrands in Eq. (E.2) contain products of terms which are not accessible in an EPRB
laboratory experiment. However, in the universe of MMs this is not an issue as the functions that
appear in Eq. (E.2) are well-defined. The last integral in Eq. (E.2) vanishes by Bell’s assumption of

perfect anticorrelation A(c, λ) = −B(c, λ) for all c. Using the triangle inequality and the assumption
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that |A(a, λ)| ≤ 1, |B(c, λ)| ≤ 1, |B(d, λ)| ≤ 1, we obtain⏐⏐⏐⏐∫ A(a, λ)B(c, λ)µ(λ) dλ−

∫
A(a, λ)B(d, λ)µ(λ) dλ

⏐⏐⏐⏐ ≤ 1 +

∫
A(c, λ)B(d, λ)µ(λ) dλ, (E.3)

hich is the inequality used by Bell to prove his theorem. Eq. (E.1) is different from Eq. (E.3) but, as
ell showed, also leads to the conclusion that the expressions of the correlations ⟨A(a)B(c)⟩ = ±a ·c,
A(a)B(d)⟩ = ±a · d, and ⟨A(c)B(c)⟩ = ±c · d is incompatible with Eq. (E.3). More generally, Bell’s
heorem states that the correlation

C(a, c) =

∫
A(a, λ)B(c, λ)µ(λ) dλ, (E.4)

annot arbitrarily closely approximate the function −a · c for all a and c [43,93]. Assuming that
(a, c) = −a · c and choosing, for instance, a = (1, 1, 0)/

√
2, c = (1, 0, 0), d = (−1, 0, 0),

Eq. (E.3) becomes
√
2 ≤ 0, clearly a contradiction. Bell’s theorem is a restatement of the existence

of contradictions, derived from Eq. (E.3).
The assumption of perfect anticorrelation is necessary to arrive at Eq. (E.3) but is not necessary

to prove Bell’s theorem, as Bell and CHSH (Clauser, Horn, Shimony and Holt) showed by considering
four instead of three functions [93,94,96], also avoiding the conflict of the kind mentioned earlier.
In the case of four functions, the proof of the theorem follows directly from Eq. (N.9b), as we now
show.

E.1. Proof of the Bell–CHSH inequality

Using the triangle inequality and |xy ± xz| ≤ 1± yz if |x| ≤ 1, |y| ≤ 1, and |z| ≤ 1 (see Eq. (N.5))
e have

|C(a, c) − C(a, d) + C(b, c) + C(b, d)| ≤ |C(a, c) − C(a, d)| + |C(b, c) + C(b, d)|

≤

∫ (
|A(a, λ)B(c, λ) − A(a, λ)B(d, λ)|

+ |A(b, λ)B(c, λ) + A(b, λ)B(d, λ)|
)
µ(λ) dλ

≤

∫
(1 − B(c, λ)B(d, λ) + 1 + B(c, λ)B(d, λ)) µ(λ) dλ

≤ 2
∫
µ(λ) dλ = 2 . (E.5)

n the proof of Eq. (E.5), there is no conflict of the type encountered in the proof of Eq. (E.1). If we
ssume that C(a, c) = −a·c, it is not difficult to find a’s, b’s, c’s and d’s for which inequality Eq. (E.5)
s violated. Bell’s theorem is a restatement of the existence of these violations.

We emphasize that inequalities Eqs. (E.3) and (E.5) have been derived within the context of the
M Eq. (35) in which the integration over λ is over the full domain of λ. From the perspective of
PRB laboratory experiments, the application of Eq. (E.5) can only be justified if the data produced
y the EPRB laboratory experiment comes in the form of quadruples, as in the case of an extended
PRB experiment [97]. For all EPRB experiments performed up to this day, there is no evidence that
his is the case.

.2. Bell’s theorem and separation of conditions

Applied to separating conditions in the description of EPRB data (see Section 8, Bell’s theorem
ells us that if we are given data collected under conditions (c1, c2) with correlation C(c1, c2) it may,
epending on the values taken by the latter, be mathematically impossible to find functions f (c1, λ)
nd g(c2, λ) such that

C(c1, c2) =

∫
f (c1, λ)g(c2, λ)µ(λ) dλ, (E.6)
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Fig. F.11. Conceptual representation of an experiment with an idealized Stern–Gerlach magnet (cylinder). A source
roduces neutral particles carrying magnetic moments that are aligned along the direction represented by the unit vector
. The magnetic field gradient of the Stern–Gerlach magnet with its uniform magnetic field component along the directions
f the unit vectors d diverts each incoming particle into one of two, spatially separated directions labeled by Sd = +1 and

Sd = −1. The discrete values of these labels describe the quantum state of the magnetic moment of the particle. Particles
leave the Stern–Gerlach magnet with their magnetic moment along ±d, labeled by the spin quantum number Sd = ±1.
uantum theory predicts that the number of particles with quantum numbers Sd = ±1 is proportional to (1+ Sd c · d)/2.

f we impose the constraints |f (c1, λ)| ≤ 1 and |g(c2, λ)| ≤ 1. Given C(c1, c2), if it is found that there
o not exist scalar functions f (c1, λ) and g(c2, λ) satisfying the aforementioned constraints, and a
ensity µ(λ) such that Eq. (E.6) holds, using matrices instead of scalar function seems like the first

alternative to explore.

Appendix F. Application of Bell’s theorem to Stern–Gerlach experiments

Bell’s theorem, see Section 11.1, stripped from all relations to the EPRB experiment, tells us that
scalar functions A(c, λ) and B(d, λ) such that

c · d =

∫
A(c, λ)B(d, λ)µ(λ) dλ, |A(c, λ)| ≤ 1, |B(d, λ)| ≤ 1, 0 ≤ µ(λ),

∫
dλ µ(λ) = 1,

(F.1)

o not exist. We apply Bell’s theorem to the experiment sketched and explained in the caption of
ig. F.11. According to quantum theory, the number of particles leaving the Stern–Gerlach magnet
long the direction labeled by Sd = +1 is proportional to (1+ Sd c ·d)/2. Consequently, the average
alue of Sd is ⟨Sd⟩ =

∑
Sd=±1 Sd(1 + Sd c · d)/2 = c · d.

Thus, in the notation of Section 8, Bell’s theorem guarantees that there do not exist functions
1 ≤ z̃(λ, d) ≤ 1, 0 ≤ f̃ (λ, c) ≤ 1 (with the symbol λ denoting an arbitrary collection of variables)

and a measure 0 ≤ µ(λ) ≤ 1 such that∫
f̃ (λ, c)µ(λ) dλ = 1,

∫
z̃(λ, d)̃f (λ, c)µ(λ) dλ = c · d, (F.2)

for all unit vectors c and d.
From Eq. (F.2), it is clear that ‘‘locality’’ actually means ‘‘separation’’, in terms of scalar functions

in this case, which depend on distinct conditions (c and d in this case). We emphasize that this
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no-go theorem is the result of applying ‘Bell’s theorem to the Stern–Gerlach experiment, not to the
EPRB experiment.

Appendix G. Direct proof of a less general Bell theorem: I

We simplify matters by replacing the three-dimensional unit vectors a, b and the hidden variable
by two-dimensional unit vectors that are specified by the angles a, b ∈ [0, 2π ] and a real variable

φ ∈ [0, 2π ], respectively. We give a simple, direct proof that for any differentiable, periodic, real-
valued functions f (x) = f (x+2π ) or g(x+2π ) having a finite number of zeros Kf and Kg , respectively,
he expression

I(a, c) =
1
2π

∫ 2π

0
sign [f (φ − a)] sign [g(φ − c)] dφ, (G.1)

annot be equal to ± cos(a − c) for all a and b. Making use of the periodicity, it is sufficient to
emonstrate this fact by considering the function

I(θ ) =
1
2π

∫ 2π

0
sign [f (φ − θ )] sign [g(φ)] dφ, (G.2)

here θ = a − c .
Taking the derivative with respect to θ and using d sign(x)/dx = 2δ(x) we find

∂ I(θ )
∂θ

=
1
π

∫ 2π

0
δ(f (φ − θ ))

∂ f (φ − θ )
∂θ

sign [g(φ)] dφ = −
1
π

∫
δ(f (φ))

∂ f (φ)
∂φ

sign [g(φ + θ )] dφ .

(G.3)

erforming the integral over φ by using the identity

δ(f (φ)) =

Kf∑
k=1

δ(φ − φk)

|
∂ f (x)
∂x |

φk

, (G.4)

here k = 1, . . . , Kf labels the zeros of f (φ), that is f (φk) = 0, we obtain

∂ I(θ )
∂θ

= −
1
π

Kf∑
k=1

1

|
∂ f (φk)
∂φk

|

∂ f (φk)
∂(φk)

sign [g(φk + θ )] = −
1
π

Kf∑
k=1

sign
[
∂ f (φk)
∂(φk)

g(φk + θ )
]

∈

{
−

Kf

π
,−

Kf − 1
π

, . . . ,
Kf − 1
π

,
Kf

π

}
. (G.5)

nterchanging the roles of f (φ) and g(φ) leads to a similar expression.
If I(θ ) = ± cos θ then ∂ I(θ )/∂θ = ∓ sin θ ∈ [−1,+1]. But Eq. (G.5) shows that within this

ange, ∂ I(θ )/∂θ obtained from Eq. (G.2) can at most take the values ±1/π,±2/π,±3/π which
learly does not arbitrarily closely approximate ∓ sin θ for all θ . For instance, f (φ) = g(φ) = cosφ
see Appendix L.1) has two zeros and ∂ I(θ )/∂θ = −(2/π ) sign[sin θ ] = ∓2/π ̸= ∓ sin θ for almost
all θ .

Appendix H. Direct proof of a less general Bell theorem: II

In Appendix G, the ±1’s are obtained from the periodic functions sign[f (x)] and sign[g(x)]. Then,
simply because cos2(x) ̸= sign[f (x)], it is obviously impossible to reproduce Malus’ law. We can
recover Malus’ law if we consider periodic functions 0 ≤ f (x) = f (x + 2π ) ≤ 1 and define

A(a, φ) =

∫ 1

0
sign[f (φ − a) − r] dr, −1 ≤ A(a, φ) ≤ 1 . (H.1)

ndeed, if we choose f (x) = cos2(x) and use f (x) to define a CM that generates +1 (−1) events if
os2(x) > r (cos2(x) ≤ r), these events appear with a frequency given by Malus’ law.
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Without invoking Bell-type inequalities, we now prove that for any well-defined, real-valued
eriodic function 0 ≤ f (x) = f (x + 2π ) ≤ 1

I(a, c) =
1
2π

∫ 1

0

∫ 1

0

∫ 2π

0
sign [f (φ − a) − r] sign

[
f (φ − c) − r ′

]
dφ dr dr ′, (H.2)

cannot be equal to ± cos k(a − c) for all a and c and k = 1, 2, . . ..
Substituting φ → φ + c into Eq. (H.2), and using the periodicity of f (x), we obtain

I(θ ) =
1
2π

∫ 1

0

∫ 1

0

∫ 2π

0
sign [f (φ − θ ) − r] sign

[
f (φ) − r ′

]
dφ dr dr ′, (H.3)

where θ = a−c . Calculating the second derivative of I(θ ) with respect to θ and using d sign(x)/dx =

2δ(x) twice we find

∂2I(θ )
∂θ2

= −
2
π

∫ 2π

0

∂ f (φ)
∂φ

∂ f (φ + θ )
∂θ

dφ . (H.4)

Substituting the Fourier series f (φ) =
∑

+∞

n=−∞
fneinφ in Eq. (H.4), performing the integral over φ and

using f−n = f ∗
n (because f (x) is real-valued) yields

∂2I(θ )
∂θ2

= −8
∑
n>0

n2
|fn|2 cos nθ . (H.5)

q. (H.5) is equal to ∂2θ cos kθ = −k2 cos kθ if |fk|2 = 1/8 and |fn|2 = 0 for all n ̸= k. Writing
k = |fk|eiψ with ψ a real number, we have f (θ ) = f0+ (1/

√
2) cos k(θ+ψ). By assumption 0 ≤ f (θ ),

mplying that we must have f0 ≥ 1/
√
2. Then f (θ ) ≥ [1 + cos k(θ +ψ)]/

√
2. For θ = −ψ , we have

(θ ) ≥
√
2 > 1, contradicting the assumption that f (θ ) ≤ 1. Furthermore, Eq. (H.5) can never be

equal to ∂2θ [− cos kθ ] = +k2 cos kθ because −8|fk|2 can never be equal to one. This completes the
roof.
Consider the case in which we require I(θ ) = (1/2) cos θ instead of I(θ ) = cos θ . Eq. (H.5) is

equal to (1/2)∂2θ [cos θ ] = −(1/2) cos θ if |f1|2 = 1/16 and |fn|2 = 0 for all n > 1. It follows that
e must have 0 ≤ f0 ± 1/2 ≤ 1 or f0 = 1/2 such that f (θ ) = [1 + cos(θ + ψ)]/2. Thus, the model
q. (H.1) can produce a correlation

1
2
cos(a − c) =

∫
A(a, φ)A(c, φ) dφ, (H.6)

but not a correlation with the factor 1/2 removed.

Appendix I. Local hidden variable models: discrete data

In this, we derive inequalities for LHVMs in the case of discrete data. Adopting the notation used
in Eq. (36), application of the triangle inequality and Eq. (N.5) yields

|C(a, c) − C(a, d) + C(b, c) + C(b, d)| ≤ |C(a, c) − C(a, d)| + |C(b, c) + C(b, d)|

≤

P∑
i=1

(
|A(a, λi)B(c, λi) − A(a, λi)B(d, λi)|

+ |A(b, λi)B(c, λi) + A(b, λi)B(d, λi)|
)
µ(Vi)

≤ 2, (I.1)

howing that the Bell–CHSH inequality also holds for LHVMs defined by the finite sum Eq. (36).
The derivation of model-free inequality Eq. (B.9) did not rely on any assumption about the data

ther than that the data are discrete, taking values in the interval [−1,+1]. In contrast, LHVMs
ssume that there is a rule that specifies how the value of a data item depends on hidden variables,
ollectively denoted by λ [43,93]. In the following, we change the notation somewhat to make it is

asier to recognize the relation with the model-free derivation of inequality Eq. (B.9).
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Imagine repeating the EPRB experiment four times with specific combinations (a, c), (a, d), (b, c),
nd (b, d). We denote the outcomes for condition x ∈ {a, b, c, d} by A(x, λ) = ±1 and B(x, λ) = ±1
here λ plays the role of the hidden variable, taking values in the domain Λ. In LHVMs, the actual
alue of A(x, λ) or B(x, λ) depends on both x and on λ but, for the purpose of this section, there
s no need to specify this dependence in more detail. Thus, instead of e.g., A1,n in Appendix B, in
HVMs we have A(a, λn). Whereas the n in A1,n is simply a label for the nth data item recorded
nder condition 1, A(x, λn) or B(x, λn) are assumed to be known mathematical functions for all x
nd λn, λn being the value of λ for the nth pair.
In four independent but equally long runs of length N , the EPRB experiment produces the discrete

ata A(a, λn), etc., for n = 1, . . . ,N . With these data, we compute the correlations

C(a, c) =
1
N

N∑
n=1

A(a, λn)B(c, λn), C(a, d) =
1
N

N∑
n=1

A(a, λ′

n)B(d, λ
′

n),

C(b, c) =
1
N

N∑
n=1

A(b, λ′′

n)B(c, λ
′′

n), C(b, d) =
1
N

N∑
n=1

A(b, λ′′′

n )B(d, λ
′′′

n ) . (I.2)

he single, double and triple primes indicate that, in principle, the λ’s in each of the independent
our runs may be different.

Without any specification of the domain the λ’s and without any knowledge about the process
hat generates them, each of the correlations in Eq. (I.2) can take the value ±1 independent of the
alues taken by the others, yielding the trivial bounds

|C(a, c) − C(a, d) + C(b, c) + C(b, d)| ≤ |C(a, c) − C(a, d)| + |C(b, c) + C(b, d)| ≤ 4 . (I.3)

ssume that, for whatever reason, {λn | n = 1, . . . ,N} = {λ′
n | n = 1, . . . ,N} = {λ′′

n | n =

, . . . ,N}= {λ′′′
n | n = 1, . . . ,N}. Then, it is possible to rearrange the terms in the sums in Eq. (I.2)

uch that for each n, the A’s and B’s appearing in Eq. (I.2) form a quadruple, that is ∆ = 1. From
q. (B.9) it then follows that

|C(a, c) − C(a, d) + C(b, c) + C(b, d)| ≤ |C(a, c) − C(a, d)| + |C(b, c) + C(b, d)| ≤ 2, (I.4)

hich takes the form of the Bell–CHSH inequality Eq. (E.5).
We now ask ourselves if it is possible to ‘‘interpolate’’ between the case of total absence of

nowledge about the λ’s, yielding inequality Eq. (I.3), and the special case that led to the Bell–CHSH
nequality Eq. (I.4). To derive a useful inequality, we do not need to specify the domain of the λ’s,
they may represent e.g., different animals) but we assume that the number of different λ’s is finite.
n symbols λ ∈ Λ = {λ1, . . . , λK }. At this stage, we make no assumption about which λ’s of the set
appear in a particular run.
As the number of different λ’s is assumed to be finite, the sums in Eq. (I.2) may contain terms

uch that λn = λ′

n′ = λ′′

n′′ = λ′′′

n′′′ . We denote the largest set of quadruples for which the latter
ondition is satisfied by Q = {(n, n′, n′′, n′′′) |λn = λ′

n′ = λ′′

n′′ = λ′′′

n′′′ ; n, n′, n′′, n′′′
∈ {1, . . . ,N}},

hereby it is implicitly understood that different quadruples (n, n′, n′′, n′′′) of Q differ in all four
lements n, n′, n′′ and n′′′. Note that the number of elements in the set Q is a lower bound to the
aximum number of quadruples one can find by considering the values of the A’s and B’s instead
f the values of the λ’s.
At this point, the problem of deriving an upper bound to |C(a, c) − C(a, d)|+|C(b, c) + C(b, d)|

s identical to the one solved in Appendix B, Therefore, we have

|C(a, c) − C(a, d) + C(b, c) + C(b, d)| ≤ |C(a, c) − C(a, d)| + |C(b, c) + C(b, d)| ≤ 4 − 2∆′,

(I.5)

here in this case, 0 ≤ ∆′
≤ ∆ ≤ 1 quantifies the fraction of times the same λ’s appear

imultaneously in the four data sets used to compute C(a, c), C(a, d), C(b, c), and C(b, d).
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I.1. Illustration I

As a concrete realization of an LHVM, assume that there is a fixed rule R, an ‘‘equation of motion’’
hat, given the current value of λ, yields the value of the next λ. For instance

λn+1 = R(λn), n = 1, 2, . . . . (I.6)

e further require that the process λ1 → λ2 → . . . is periodic with period K . Symbolically,
K (λ) = λ for any λ ∈ Λ.
If K ≤ N we may write N = mK + r where m ≥ 1 and 0 ≤ r < K . In other words, the

umber of quadruples with the same λ’s is at least equal to mK and 4 − 2∆′
= 2 + 2(1 − ∆′) ≤

+ 2(N − mK )/N = 2 + 2r/N . Therefore, from Eq. (I.5)

|C(a, c) − C(a, d) + C(b, c) + C(b, d)| ≤ |C(a, c) − C(a, d)| + |C(b, c) + C(b, d)| ≤ 2 +
2r
N
.

(I.7)

bviously, if K → N , then m → 1 and r/N → 0 or if K is independent of N and N → ∞, Eq. (I.7)
reduces to the Bell–CHSH inequality |C(a, c) − C(a, d) + C(b, c) + C(b, d)| ≤ 2. If K > N , we have
to determine ∆′ by computation and use Eq. (I.5).

I.2. Illustration II

We consider four independent but equally long runs of length N and assume a from an
experimental viewpoint, more ‘‘realistic’’ scenario in which the order in which the K different values
of λ ∈ Λ = {λ1, . . . , λK } appear is unpredictable. As the number K of different λ’s is finite, the
correlations Eq. (I.2) can be written as

C(a, c) =
1
N

K∑
k=1

n(1)
k A(a, λk)B(c, λk), C(a, d) =

1
N

K∑
k=1

n(2)
k A(a, λk)B(d, λk), (I.8a)

C(b, c) =
1
N

K∑
k=1

n(3)
k A(b, λk)B(c, λk), C(b, d) =

1
N

K∑
k=1

n(4)
k A(b, λk)B(d, λk), (I.8b)

here 0 ≤ n(1)
k ≤ N , constrained by

∑K
k=1 n

(1)
k = N , is the number of times λk appears in the sum

of the A(a, λn)B(c, λn) terms, and the same for n(2)
k etc.

For each value of k in Eq. (I.8), we introduce the symbol Nk = min(n(1)
k , n

(2)
k , n

(3)
k , n

(4)
k ) and we

ave

|C(a, c) − C(a, d) + C(b, c) + C(b, d)| ≤ |C(a, c) − C(a, d)| + |C(b, c) + C(b, d)|

≤
1
N

K∑
k=1

Nk

⏐⏐⏐⏐A(a, λk)[B(c, λk) − B(d, λk)
]⏐⏐⏐⏐

+

⏐⏐⏐⏐A(b, λk)[B(c, λk) + B(d, λk)
]⏐⏐⏐⏐

+
1
N

K∑
k=1

⏐⏐⏐⏐(n(1)
k − Nk)A(a, λk)B(c, λk)

− (n(2)
k − Nk)A(a, λk)B(d, λk)

⏐⏐⏐⏐
+

⏐⏐⏐⏐(n(3)
k − Nk)A(b, λk)B(c, λk)
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+ (n(4)
k − Nk)A(b, λk)B(d, λk)

⏐⏐⏐⏐
≤ 2

1
N

K∑
k=1

Nk +
1
N

K∑
k=1

(
|n(1)

k − Nk| + |n(2)
k − Nk|

+|n(3)
k − Nk| + |n(4)

k − Nk|

)
= 2

1
N

K∑
k=1

Nk +
1
N

K∑
k=1

(
n(1)
k − Nk

+n(2)
k − Nk + n(3)

k − Nk + n(4)
k − Nk

)
= 2

1
N

K∑
k=1

Nk + 4

(
1 −

1
N

K∑
k=1

Nk

)
= 4 − 2∆′′, (I.9)

hich has the same form as Eq. (B.9), except that in this particular case 0 ≤ ∆′′
= N−1∑K

k=1
min(n(1)

k , n
(2)
k , n

(3)
k , n

(4)
k ) ≤ ∆ ≤ 1.

Let us consider the simple model for which the probability to select k ∈ {1, . . . , K } is 1/K . Then,
for sufficiently large N , n(1)

k ≈ n(2)
k ≈ n(3)

k ≈ n(4)
k ≈ N/K implying that ∆′′ ≲ 1. In other words,

|C(a, c) − C(a, d)|+|C(b, c) + C(b, d)| ≤ 2+ϵ where ϵ is a small number that reflects the statistical
fluctuations in n(1)

k , n(2)
k , n(3)

k , and n(4)
k . Note that if K ≫ N , ∆′′

≈ 0 and Eq. (I.9) reduces to Eq. (I.3).

Appendix J. Proof of Lemma I

Lemma I. Given four, pair-wise compatible, nonnegative, normalized bivariates f (x1, x3|a, c), f (x1,
x4|a, d), f (x2, x3|b, c), and f (x2, x4|b, c) with moments K1, K2, K3, K4, K13, K14, K23, and K24 satisfying
the Bell–CHSH inequalities |K13 ∓ K14| + |K23 ± K24| ≤ 2, there exists a number α satisfying

− 1 ≤ −1 + max(|K13 + K14|, |K23 + K24|, |K3 + K4|) ≤ α ≤ 1 − max(|K13 − K14|,

|K23 − K24|, |K3 − K4|) ≤ 1 . (J.1)

Proof. From Eq. (J.1), it follows that in order to prove the existence of (a range of) α, the following
inequalities must hold

−1 + |K13 + K14| ≤ 1 − |K13 − K14|, (J.2a)
−1 + |K13 + K14| ≤ 1 − |K23 − K24|, (J.2b)
−1 + |K13 + K14| ≤ 1 − |K3 − K4|, (J.2c)
−1 + |K23 + K24| ≤ 1 − |K13 − K14|, (J.2d)
−1 + |K23 + K24| ≤ 1 − |K23 − K24|, (J.2e)
−1 + |K23 + K24| ≤ 1 − |K3 − K4|, (J.2f)

−1 + |K3 + K4| ≤ 1 − |K13 − K14|, (J.2g)
−1 + |K3 + K4| ≤ 1 − |K23 − K24|, (J.2h)
−1 + |K3 + K4| ≤ 1 − |K3 − K4| . (J.2i)

Recall that all the moments that appear in Eq. (J.2) do not exceed one on absolute value. Then
Eqs. (J.2a), (J.2e), and (J.2i) follow directly from the basic inequality |x + y| + |x − y| ≤ 1 − xy +

1 + xy ≤ 2 (see Appendix N). Eq. (J.2c) follows from |K3 − K4| = |K3 ± K1 − (K4 ± K1)| ≤

K3 ± K1| + |K4 ± K1| ≤ 2 ± (K13 + K14) ≤ 2 − |K13 + K14|. Replacing subscript 1 by 2, we prove
q. (J.2f). In the same way, we can prove Eqs. (J.2g) and (J.2h). Finally, the assumption that Bell–CHSH
nequalities Eq. (54) hold is just rewriting Eqs. (J.2b) and (J.2d).

Lemma I shows that we may use any choice of α bounded as in Eq. (J.1) to assign a value to K34.
y construction and appeal to Eq. (N.6), K1, K3, K4, K13, K14, and K34 can be shown to satisfy all the
nequalities Eqs. (48a)–(48c) and so do K , K , K , K , K , and K (with subscript 1 replaced by 2).
2 3 4 23 24 34
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Fig. K.12. Transpiled versions of the circuits used to generate the raw data used to compute the data shown in Table 1.
(a): (a, b) = (45, 0); (b): (a, b) = (135, 0); (c): (a, b) = (45, 90); (d): (a, b) = (135, 90).

ppendix K. Transpiled circuits of the EPRB quantum computer experiment

Fig. K.12 shows the transpiled circuits used to compute the four contributions to the Bell–CHSH
unction SCHSH, see Table 1.

ppendix L. How to obtain the correlation C (a, c) = −a · c

As Bell’s theorem is mathematically sound, there is no way to obtain the correlation C(a, c) =

a · c if one sticks to the conditions under which the theorem has been proven [43]. Thus, one
ay to obtain the correlation while retaining the factorized form of Eq. (35) is to discard one or
ore of the conditions under which the theorem has been proven. Another alternative is to forget
ltogether about Eq. (35) because as explained in Section 11.5, Eq. (35) may be too primitive to
apture the way the experimental data is collected and processed.
In this section, we keep the mathematics as simple as possible by focusing on models for EPRB

xperiments with polarized light. Then a = (cos a, sin a, 0), c = (cos c, sin c, 0), Malus’ law reads
(x|a, φ) = [1 + x cos 2(φ − a)]/2, and the quantum-theoretical result of the correlation of two
hotons with their polarizations in the singlet state reads

C(a, c) = − cos 2(a − c), (L.1)

he extra factor two stemming from the fact that we are not considering spin-1/2 objects but photon
olarizations, see Section 7.1. Repeating the calculations with 3D vectors is a little more tedious but
traightforward.
An NQM model for the EPRB experiment is considered to be physically relevant if (1) in the case

f photons, the model also complies with Malus’ law, or (2) in the case of spin-1/2 objects, the
odel yields P(x|a, S) = (1 + x a · S)/2. We first review NQMs that fail to and then present NQMs

hat succeed to yield the correlation C(a, c) = − cos 2(a − c).

.1. Bell’s toy model

In Bell’s toy model, the correlation is given by Eq. (35) with

A(a, λ) = −B(a, λ) = sign [cos 2(λ− a)] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+1 if 0 ≤ 2(λ− a) < π/2

−1 if π/2 ≤ 2(λ− a) < 3π/2 , (L.2)
+1 if 3π/2 ≤ 2(λ− a) < 2π
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where 0 ≤ 2(λ − a) < 2π and λ denotes the polarization of the light beam. Model Eq. (L.2) is in
latant contradiction with Malus’ law which predicts a sinusoidal dependence as a function of λ−a
ut has the virtue that the correlation Eq. (35) has some interesting features.
With the explicit form Eq. (L.2) and µ(λ) = 1/2π , the integral in Eq. (35) can be carried out

nalytically, yielding [43]

C(a, c) =

∫
A(a, λ)B(c, λ)µ(λ) dλ = −1 +

2
π

arccos (cos 2(a − c)) . (L.3)

For −π/2 ≤ (a − c) ≤ π/2, the correlation C(a, c) = −1 + 4|a − c|/π . Furthermore, for any a = c ,
we have C(a, c) = −1 implying that is there is perfect anticorrelation, independent of the choice
of a = c.

In Eq. (L.3), the integration over λ with weight µ(λ) can, but does not have to, be interpreted as
the integration over the realizations of the random variable λ with probability density µ(λ). If we
adopt this view, then the individual values of A(a, λ) will be random, either +1 or −1. Nevertheless,
in Bell’s model, the ±1 events observed at the two sides are completely correlated if a = b. Thus,
in this probabilistic version of Bell’s toy model, if a = c (arbitrary) knowing the value of say A(a, λ),
we can predict with certainty that the value of B(c, λ) will be the opposite of A(a, λ), even though
the values of the A’s are random themselves. It is this feature of the correlation −a · c which is
commonly referred to in popular accounts of the EPRB experiment.

L.2. Bell’s modified toy model: Malus’ law

As mentioned in Appendix L.1, the model defined by Eq. (L.2) does not comply with Malus’ law.
However, fixing this only requires the simple modification

A(a, φ, r) = sign [1 + cos 2(φ − a) − 2r] , B(c, φ, r ′) = − sign
[
1 + cos 2(φ − c) − 2r ′

]
,

(L.4)

where 0 ≤ φ < 2π denotes the polarization of the light beam and 0 ≤ r, r ′
≤ 1 are uniform random

variables. From Eq. (L.4), it follows immediately that the probability density to find A(a, φ, r) = +1
is given by cos2(φ − a), in agreement with Malus’ law.

With the explicit form Eq. (L.4) and µ(φ) = 1/2π , the integral in Eq. (35) can be carried out
analytically, yielding

C(a, c) =
1
2π

∫ 2π

0
dφ

∫ 1

0
dr
∫ 1

0
dr ′A(a, φ, r)B(c, φ, r ′) = −

1
2
cos 2(a − c) . (L.5)

t is important to note that, as already indicated by Eq. (L.4), there are two different random variables
and r ′ at play. Thus, in Bell’s language one might be tempted to write λ = {φ, r, r ′

}. However,
then it is difficult to imagine how the station measuring A(a, φ, r) can know that it should use
he r-part of λ whereas the station measuring B(a, φ, r ′) should use the r ′-part of λ. We might
ry to avoid this conflict by assuming that r = r ′ but then C(a, c) = −1 for all a and c, which is
nacceptable.
Thus, it is not obvious that Bell’s λ is sufficiently general to include the simple variant Eq. (L.4)

f Bell’s toy model. However, Bell also showed that his theorem holds true if we replace A(a, λ)
nd B(c, λ) by A(c, λ) and B(c, λ) obtained by averaging with respect to ‘‘distributions of instru-

ment variables’’ [93,96]. In Eq. (L.4), r and r ′ play the role of these instrument variables. In
summary, model Eq. (L.4) satisfies the conditions for proving Bell’s theorem, as confirmed by
Eq. (L.5).

The factor 1/2 that appears in front of the cosine in Eq. (L.5) is a common feature of factorable
models (such as the one discussed in Appendix L.3) that comply with Malus’ law. In essence,
recovering the quantum-theoretical results C(a, c) = − cos 2(a−c) amounts to constructing models
that change 1/2 into 1.
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L.3. Classical electrodynamics

According to empirical evidence, the intensity of light passing through a polarizer is given by
alus’ law

I(x|a, φ, I0(t)) = I0(t)
1 + x cos 2(φ − a)

2
, (L.6)

here x = ±1 labels the directions of the outgoing light, φ and a represent the polarization of the
ncoming light and orientation of the polarizer, respectively. The total intensity of light impinging on
he polarizer is I0(t) which is assumed to fluctuate with time. In this section, ⟨f (t)⟩ = T−1

∫ T
0 f (t) dt

enotes the time average of a function f (t) over the time of observation T .
As usual, it is expedient to work with dimensionless variables. To this end, we divide both sides

f Eq. (L.6) by the time-averaged intensity and obtain

I(x|a, φ, r(t))
⟨I0(t)⟩

=
I0(t)

⟨I0(t)⟩
1 + x cos 2(φ − a)

2
= r(t)

1 + x cos 2(φ − a)
2

, (L.7)

here r(t) = I0(t)/⟨I0⟩ ≥ 0 is a dimensionless random variable with time average ⟨r(t)⟩ = 1. By
onstruction we have

⟨I(x|a, φ, r(t))⟩
⟨I0⟩

=
1 + x cos 2(φ − a)

2
, (L.8)

hich is the dimensionless form of Malus’ law, as expected.
For simplicity, we assume that the left and right going light beams in the EPRB setup have exactly

he same intensity at any time and that their polarizations differ by φ0, which is fixed in time. Then,
he expression of the time-averaged correlation of the two normalized intensities reads

⟨I(x, y|a, c, φ, φ0)⟩
⟨I0⟩2

= ⟨r2(t)⟩
1 + x cos 2(φ − a)

2
1 + y cos 2(φ − c + φ0)

2
. (L.9)

ext, we imagine that we collect data for Eq. (L.9) by repeating the experiments for many values
f the polarization 0 ≤ φ < π . Integrating over all polarizations with uniform density 1/π , the
orrelated intensity is found to be

I(x, y|a, c, φ0) =
1
π

∫ π

0

⟨I(x, y|a, c, φ, φ0)⟩
⟨I0⟩2

dφ = ⟨r2(t)⟩
2 + x y cos 2(a − c + φ0)

8
. (L.10)

hus, this classical, Maxwell-theory model yields for the correlation

C(a, c) =

∑
x,y=±1

xyI(x, y|a, c, φ0) =
⟨r2(t)⟩

2
cos 2(a − c + φ0) . (L.11)

A very simple model for the fluctuating intensity can be constructed as follows. We start from

1
T

∫ T

0
rk(t) dt ≈

1
N

N−1∑
n=0

rk(nT/N) = ⟨rk⟩N . (L.12)

and assume that r(nT/N) is a random variable with the probability density p(r(nT/N)) =

xp(−r(nT/N)) for each n = 0, . . . ,N − 1. It is easy to check numerically that for each realization
f the set of variables {r(0), r(T/N), . . . , r((N − 1)T/N)}, we have ⟨r(t)⟩N → 1 and ⟨r2(t)⟩N → 2

as N → ∞. Of course, the same result is obtained by replacing rk(nT/N) by its average. Thus, this
simple model yields ⟨r2(t)⟩ = 2 and therefore the correlation Eq. (L.11) becomes

C(a, c) =

∑
x,y=±1

xyI(x, y|a, c, φ0) = cos 2(a − c + φ0) . (L.13)

If φ0 = π/2, Eq. (L.13) agrees with the desired quantum-theoretical expression − cos 2(a − c) for
the correlation of two photons with their polarizations described by the singlet state.
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A key difference between the classical wave mechanical model and quantum theory of spin-1/2
bjects is that in the latter, the results of quantum measurements, an abstract theoretical concept,
re discrete, either +1 or −1 whereas in the former, the intensity can, in principle, take all possible

non-negative real values. Of course, the light intensity measured in real experiments takes discrete
values (the resolution of any measurement device being finite) but the fact remains that these
discrete values are not bound to the interval [0, 1].

In conclusion, the local realistic, classical wave mechanical model based on Eqs. (L.6) and (L.9)

1. complies with Malus’ law and can yield the desired correlation C(a, c) = − cos 2(a − c) for
two light beams with opposite but otherwise random polarization,

2. does not satisfy the conditions necessary to prove Bell’s theorem because 0 ≤ r(t) can exceed
one, implying that the conditions A(x|a, λ) ≤ 1 and B(x|c, λ) ≤ 1 in Eq. (35) are not satisfied.

.4. A system of two classical spins

We start from the representation Sj = Sj(cosφj sin θj, sinφj sin θj, cos θj)T for j = 1, 2, of the
lassical spins and introduce the unit vectors aj = (cosαj sinβj, sinαj sinβj, cosβj)T for j = 1, 2 to
pecify two directions. We assume that the length of the spins Sj ≥ 0 is distributed according to a
et unspecified (probability) density p(S1, S2).
We consider a pair of spins that is perfectly anticorrelated, that is S1 = −S2, implying that

1 = S2 = S, θ1 = θ2 + π = θ , φ1 = φ2 = φ. We assume that the vectors representing pairs of the
ame length S uniformly cover the 3D sphere of radius S. With these assumptions, the (probability)
density for all pairs reads p(S1, S2) = p(S1)δ(S1 + S2) = S2µ(S) sin θ δ(S1 + S2), where the function
µ(S) ≥ 0 is to be determined later.

Expressing the requirement that the density p(S1, S2) is normalized to one yields

1
4π

∫
∞

0

∫ π

0

∫ 2π

0
S2 µ(S) sin θ dS dθ dφ =

∫
∞

0
S2 µ(S) dS = 1, (L.14)

which is a first constraint on candidates for the nonnegative function µ(S). For the single-spin
averages we have

⟨ai · Si⟩ =
1
4π

∫
∞

0

∫ π

0

∫ 2π

0
S3 µ(S) sin θ dS dθ dφ [cos(φ − αi) sin θ sinβi + cos θ cosβi] = 0,

i = 1, 2, (L.15)

ndependent of the choice of µ(S). For the correlation, we have

⟨a1 · S1 a2 · S2⟩ = −⟨a1 · S1 a2 · S1⟩

= −
1
4π

∫
∞

0

∫ π

0

∫ 2π

0
S2 µ(S) sin θ dS dθ dφ{

S2 [cos(φ − α1) sin θ sinβ1 + cos θ cosβ1]

[cos(φ − α2) sin θ sinβ2 + cos θ cosβ2]
}

= −
1
4π

∫
∞

0

∫ π

0

∫ 2π

0
S4 µ(S) dS dθ dφ

{
1
2

[
cos(2φ − α1 − α2)

+ cos(α1 − α2)
]
sin3 θ sinβ1 sinβ2

+ sin θ cos2 θ cosβ1 cosβ2

}
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= −
1
2

∫
∞

0
S4 µ(S) dS

∫ π

0
dθ
[

1
2
cos(α1 − α2) sin3 θ sinβ1 sinβ2

+ sin θ cos2 θ cosβ1 cosβ2

]
. (L.16)

sing
∫ π
0 sin3 θ dθ = 4/3 and

∫ π
0 sin θ cos2 θ dθ = 2/3 we find

⟨a1 · S1 a2 · S2⟩ = −
1
3

∫
∞

0
S4 µ(S) dS

[
cos(α1 − α2) sinβ1 sinβ2 + cosβ1 cosβ2

]
= −

a1 · a2
3

∫
∞

0
S4 µ(S) dS . (L.17)

e recover the quantum-theoretical result Ê12(a1, a2) = ⟨a1 · σ1 a2 · σ2⟩ = −a1 · a2 if we choose
he density µ(S) such that Eq. (L.14) holds and that∫

∞

0
S4 µ(S) dS = 3, (L.18)

hich is always possible. For instance, if we choose µ(S) = 4 exp(−2S), we have
∫

∞

0 S2 µ(S) dS = 1
nd

∫
∞

0 S4 µ(S) dS = 3. There are many other solutions to Eqs. (L.14) and (L.18), for instance
(S) = (1/3)δ(S − 1) + (1/6)δ(S − 2), a very simple one.
As in the classical electrodynamics model discussed in Appendix L.3, the result Eq. (L.17) together

ith
∫

∞

0 S4 µ(S) dS = 3 does not contradict Bell’s theorem because the latter involves functions
A(a, λ)| ≤ 1 and |B(b, λ)| ≤ 1 whereas Eq. (L.17) is obtained by computing the correlation between
wo 3D vectors of lengths exceeding one.

To mimic a product state, we assume that p(S1, S2) = δ(S1 − M1)δ(S2 − M2) where M1 and M2
re 3D vectors which are considered to be fixed. Then we have

⟨a1 · S1⟩ = a1 · M1, (L.19a)
⟨a2 · S2⟩ = a2 · M2, (L.19b)

⟨a1 · S1 a2 · S2⟩ = a1 · M1 a2 · M2, (L.19c)

in full agreement with the quantum-theoretical result Eq. (M.6) below.
In summary: we can recover the averages and the correlation −a1 ·a2 of the singlet and product

state by replacing the ‘‘quantum spins’’ by 3D vectors of variable length and making an appropriate
choice of the density p(S1, S2).

Appendix M. Standard quantum theory of the EPRB experiment

We briefly review the standard quantum-theoretical description of the EPRB experiment. Recall
that a basic premise of such a description is that the state of the quantum system, represented by
the density matrix ρ, does not depend on the kind of measurements that are carried out [6,24].

M.1. Singlet state

If the statistics of repeated experiments with pairs of spin-1/2 objects are captured by the singlet
state defined by the density matrix

ρ =
1 − σ1 · σ2

4
=

(
|↑↓⟩ − |↓↑⟩

√
2

)(
⟨↑↓| − ⟨↓↑|

√
2

)
, (M.1)

he probability for observing the outcomes x, y = ±1 when the first spin is measured along the
irection a and the second one is measured along the direction c is given by

P(x, y|a, c) = Tr ρ
1 + x σ1 · a 1 + y σ2 · c

=
1 − x y a · c

, (M.2)

2 2 4
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from which it immediately follows that

Ê1(a, c) =

∑
x,y=±1

x P(x, y|a, c) = 0, Ê2(a, c) =

∑
x,y=±1

y P(x, y|a, c) = 0, Ê12(a, c)

=

∑
x,y=±1

x y P(x, y|a, c) = −a · c, (M.3)

n agreement with Eq. (29).

.2. Product state

If the density matrix of a two-particle system can be written as ρ = ρ1 ⊗ ρ2, the system is said
o be described by a product state [6]. Here ρi is the density matrix of particle i = 1, 2. For two
pin-1/2 objects described by a product state we have Ê12(a, b) = Ê1(a, b)̂E2(a, b) and the correlation
12(a, b) − Ê1(a, b)̂E2(a, b) = 0. Therefore the quantum state ρ = ρ1 ⊗ ρ2 is called uncorrelated.
For two spin-1/2 objects, the product state takes the generic form

ρ =
1 + σ1 · M1

2
1 + σ2 · M2

2
, (M.4)

here M1 and M2 are 3D vectors with a length less than or equal to one. If ∥M1∥ = ∥M2∥ = 1, the
roduct state Eq. (M.4) is said to be pure, otherwise it is said to be mixed [6].
From Eq. (M.4) it follows that

P(x, y|a, c) = Tr ρ
1 + x σ1 · a

2
1 + y σ2 · c

2
=

1 + x a · M1

2
1 + y c · M2

2
, (M.5)

nd

Ê1(a, c) = ⟨σ1 ·a⟩ = a·M1, Ê2(a, c) = ⟨σ2 ·c⟩ = c·M2, Ê12(a, c) = ⟨σ1 ·a σ2 ·c⟩ = a·M1 c·M2 .

(M.6)

M.3. Factorability and independence

In general, the probability of two dichotomic variables taking values +1 and −1 can be written
s

P(x, y|Z) =
1 + x E1(Z) + y E2(Z) + x y E12(Z)

4
=

1 + x E1(Z)
2

1 + y E2(Z)
2

+ x y
E12(Z) − E1(Z) E2(Z)

4
= P(x|Z)P(y|Z) + x y

E12(Z) − E1(Z) E2(Z)
4

, (M.7)

here Z stands for a collection of conditions.
By definition, if P(x, y|Z) = P(x|Z)P(y|Z) the variables x and y are (logically/statistically)

ndependent [4]. If the variables x and y are (logically/statistically) independent it immediately
ollows from Eq. (M.7) that their correlation E12(Z) − E1(Z) E2(Z) = 0.

In general, zero correlation does not imply independence [4]. However, from Eq. (M.7) it also
ollows that P(x, y|Z) = P(x|Z)P(y|Z) if the correlation E12(Z) − E1(Z) E2(Z) = 0.

In summary, the dichotomic variables x = ±1 and y± 1 are (logically/statistically) independent
f and only if their correlation E12(Z) − E1(Z) E2(Z) = 0. This is a special property of a probability
istribution of dichotomic variables.
In contrast, in quantum theory we can have zero correlation even though the density matrix

oes not factorize. For example, the density matrix Eq. (M.1) cannot be factorized (ρ ̸= ρ1 ⊗ ρ2)
et the correlation Ê12(a, c) − Ê1(a, c)̂E2(a, c) = Ê12(a, c) = −a · c is zero if the vectors a and c are
rthogonal.
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M.4. Extension of Bell’s theorem to quantum-theoretical models

In this subsection, we generalize Bell’s theorem to the realm of quantum-theoretical models.
s nothing is gained by limiting the discussion to spin-1/2 systems we prove the theorem in full
enerality. We consider a composite quantum system that consists of two identical subsystems
= 1, 2. The state of subsystem i is represented by the density matrix ρi(λ). The variable λ is an

element of a set that does not need to be defined in detail and plays exactly the same role as in
Bell’s theorem. We define a matrix ρ of the composite system by

ρ =

∫
ρ1(λ)ρ2(λ)µ(λ)dλ, (M.8)

where µ(λ) is a probability density, that is a nonnegative function, which satisfies
∫
µ(λ) dλ = 1

(compare with Eq. (35)). Using the properties of the trace Tr , Tr ρ1(λ)ρ2(λ) =
[
Tr 1ρ1(λ)

] [
Tr 2ρ2(λ)

]
1 and the fact that a sum of nonnegative definite matrices with positive weights is a nonnegative

efinite matrix [128], it follows that Eq. (M.8) is a proper density matrix for the system consisting
f subsystems one and two. Density matrices ρ of the form Eq. (M.8) are called separable. A product
tate is a special case of a separable state. In general, a separable state, being a sum (integral) of
ncorrelated states, is correlated.
To avoid mathematical technicalities, in the following we only consider quantum systems

epresented by finite-dimensional Hilbert spaces. Consider two observables of each subsystem,
epresented by the matrices A1, B1, C2 and D2, respectively. The entries of these matrices are
assumed to have been rescaled such that all the eigenvalues of these four matrices lie in the interval
[−1, 1] (the equivalent of the conditions on A(a, λ) and B(b, λ) in Eq. (35)). From the definition of
the quantum-theoretical expectation ⟨Xi⟩λ = Tr iρi(λ)Xi, it follows that for any λ, |⟨A1⟩λ| ≤ 1,
⟨B2⟩λ| ≤ 1, |⟨C1⟩λ| ≤ 1, and |⟨D2⟩λ| ≤ 1.

The correlation between observables of the two subsystems is defined by

Q (A1, C2) = ⟨A1C2⟩ = Tr ρA1C2 =

∫ [
Tr ρ1(λ)A1

] [
Tr ρ2(λ)C2

]
µ(λ)dλ =

∫
⟨A1⟩λ⟨C2⟩λµ(λ)dλ .

(M.9)

he correlations Q (A1,D2), Q (B1, C2) and Q (B1,D2) are defined similarly.
Suppose that the two-spin system is described by the singlet state. Then we have Q (A1, C2) =

12(a, c) = −a · c, Q (A1,D2) = Ê12(a, d) = −a · d, Q (B1, C2) = Ê12(b, c) = −b · c, and
(B1,D2) = Ê12(b, d) = −b · d. Making use of the Cauchy–Schwarz inequality and recalling that a,

b, c and d are unit vectors, we find⏐⏐̂E12(a, c) − Ê12(a, d) + Ê12(b, c) + Ê12(b, d)
⏐⏐2 = |a · (c − d) + b · (c + d)|2

≤ |a · (c − d)|2 + |b · (c + d)|2
+ 2 |a · (c − d)| |b · (c + d)|
≤ ∥a∥2

∥c − d∥
2
+ ∥b∥

2
∥c + d∥

2

+ 2
√

∥a∥2 ∥c − d∥2 ∥b∥2 ∥c + d∥2

≤ 8, (M.10)

where we also used ∥c−d∥
2
+∥c+d∥

2
= c2+d2

= 2 and ∥c−d∥
2
∥c+d∥

2
= (c2+d2)2−4(c·d2)2 ≤ 4.

Therefore, for the singlet state we have [98]⏐⏐̂E12(a, c) − Ê12(a, d) + Ê12(b, c) + Ê12(b, d)
⏐⏐ ≤ 2

√
2 . (M.11)

There exists a choice for a, b, c and d for which equality in Eq. (M.11) can be reached. To show
his it is sufficient to consider four vectors that lie in the x–y plane. Let us write a = (cos a, sin a, 0),
tc. For the singlet state, we have Ê12(a, c) = − cos(a − c), Ê12(a, d) = − cos(a − d), Ê12(b, c) =

− cos(b − c), and Ê12(b, d) = − cos(b − d). Then take a = 0, b = π/2, c = π/4 and d = 3π/4 to
find Ê (a, c) − Ê (a, d) + Ê (b, c) + Ê (b, d) = −2

√
2.
12 12 12 12
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On the other hand, using the triangle inequality and Eq. (N.5) we obtain

|Q (A1, C2) − Q (A1,D2)+Q (B1, C2) − Q (B1,D2)|

=

⏐⏐⏐⏐∫ [⟨A1⟩λ⟨C2⟩λ − ⟨A1⟩λ⟨D2⟩λ + ⟨B1⟩λ⟨C2⟩λ + ⟨B1⟩λ⟨D2⟩λ
]
µ(λ)dλ

⏐⏐⏐⏐
≤

∫ ⏐⏐⟨A1⟩λ⟨C2⟩λ − ⟨A1⟩λ⟨D2⟩λ + ⟨B1⟩λ⟨C2⟩λ + ⟨B1⟩λ⟨D2⟩λ
⏐⏐µ(λ)dλ

≤ 2
∫
µ(λ)dλ = 2 . (M.12)

In summary, the correlation Ê12(a, b) = ⟨σ1 · a σ2 · b⟩ of two spin-1/2 objects in the singlet state
satisfies the bound Eq. (M.11) [98] but may violate the bound Eq. (M.12). The only conclusion one
can draw from violation of the bound Eq. (M.12) is that there does not exist a separable density
matrix that yields Ê12(a, c) = −a · c for all a and c. From a violation Eq. (M.12), it would be a logical
fallacy to draw any other conclusion than the one just mentioned simply because the derivation of
Eq. (M.12) pertains to quantum theory only.

Appendix N. Basic inequalities

For any pair of real numbers u and v, the triangle inequality

|u + v| ≤ |u| + |v|, (N.1)

and the identity

(u ± v)2 + (1 − u2)(1 − v2) = (1 ± uv)2, (N.2)

hold.
In this section, the symbols w, x, y, and z represent real numbers in the range [−1, 1]. Applying

Eq. (N.2) with u = x and v = y, the second term in Eq. (N.2) is nonnegative such that

(x ± y)2 ≤ (1 ± xy)2, (N.3)

or, equivalently,

|x ± y| ≤ 1 ± xy . (N.4)

Using Eqs. (N.1) and (N.4) we obtain

|xy ± xz| = |x ∥ y ± z| ≤ 1 ± yz, (N.5a)
|xz − xw + yz + yw| ≤ |xz − xw| + |yz + yw|

≤ |x ∥ z − w| + |y ∥ z + w| ≤ 1 − zw + 1 + zw = 2 . (N.5b)

The variables appearing in Eqs. (N.5a) and (N.5b) form the triple (x, y, z) and the quadruple
(x, y, z, w), respectively. The triple/quadruple structure is essential to prove Eq. (N.5). For instance,
an expression of the form |xz − xw| + |yz + yw′

| can be larger than 2 (e.g., (x, y, z, w,w′) =

(1, 1, 1,−1, 1) yields |xz − xw| + |yz + yw′
| = 4).

Next, we prove that for any triple of real numbers a, b, and c ,

|a ± b| ≤ 1 ± c ⇐⇒ |a ± c| ≤ 1 ± b ⇐⇒ |b ± c| ≤ 1 ± a . (N.6)

Written more explicitly, the inequalities |a ± b| ≤ 1 ± c read −1 ∓ c ≤ a ± b ≤ 1 ± c from which

−1 + c ≤ a − b ≤ 1 − c ⇒ a + c ≤ 1 + b and − 1 + b ≤ a − c,
−1 − c ≤ a + b ≤ 1 + c ⇒ −1 − b ≤ a + c and a − c ≤ 1 − b, (N.7)

or, written more compactly, |a ± c| ≤ 1±b. In the same manner, we can prove that |b ± c| ≤ 1±a.
Attaching subscripts to the x’s, y’s, etc., and denoting the correlation of x’s and y’s by

⟨xy⟩ =
1
N

N∑
xiyi, (N.8)
i=1
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etc., repeated use of Eqs. (N.1) and (N.5) yields

|⟨xy⟩ ± ⟨xz⟩| ≤ 1 ± ⟨yz⟩, (N.9a)
|⟨xz⟩ − ⟨xw⟩ + ⟨yz⟩ + ⟨yw⟩| ≤ |⟨xz⟩ − ⟨xw⟩| + |⟨yz⟩ + ⟨yw⟩| ≤ 2, (N.9b)

n exactly the same manner, one proves that |⟨xz⟩ + ⟨xw⟩| + |⟨yw⟩ − ⟨yz⟩| ≤ 2, |⟨xz⟩ + ⟨xw⟩| +

⟨yz⟩ − ⟨yw⟩| ≤ 2, and |⟨xw⟩ + ⟨yz⟩| + |⟨yw⟩ − ⟨xz⟩| ≤ 2.

.1. Application: discrete data

Inequalities Eqs. (N.9) can be used to detect inconsistencies between the data and their correla-
ions [129]. Suppose that we are given a set of discrete data Q3 = {(xi, yi, zi) | i = 1, . . . , n ; xi =

1, yi = ±1, zi = ±1}, consisting of triples (xi, yi, zi). Also suppose that ⟨xy⟩ = 0.7 and ⟨xz⟩ = −0.7.
hen inequality Eq. (N.9a) puts a constraint on the values that ⟨yz⟩ may take, namely ⟨yz⟩ ≤

− 1.4 = −0.4.
Conversely, assume that we are given three numbers α = 0.7, β = −0.7 and e.g., γ = 0.4. Does

there exist a set Q3 of triples of discrete data such that ⟨xy⟩ = α and ⟨xz⟩ = β and ⟨yz⟩ = γ ? The
answer is no for if there was, the value of γ would be in conflict with the constraint ⟨yz⟩ ≤ −0.4.

For a collection of two-valued quadruples Q4 = {(xi, yi, zi, wi) | i = 1, . . . , n ; xi = ±1, yi =

±1, zi = ±1, wi = ±1} we can, in addition to Eq. (N.9a), use Eqs. (N.9) to find constraints on the
pairwise correlations.

In summary, if the averages ⟨xy⟩, ⟨xz⟩, and ⟨yz⟩ violate at least one of the inequalities Eq. (N.9a)
these averages cannot have been computed from the data set consisting of triples. Similarly, if
the averages ⟨xz⟩, ⟨xw⟩, ⟨yz⟩, and ⟨yw⟩ violate at least one of the inequalities Eqs. (N.9) these
averages cannot have been computed from the data set consisting of quadruples. To the best of our
knowledge, the inequality Eq. (N.9a) was (in a different but equivalent form) first given by Boole,
who called it a condition of possible experience [129].

N.2. Application: real-valued functions

If we define the correlation of two functions x(λ) and y(λ) by

⟨xy⟩ =

∫
x(λ)y(λ)µ(λ) dλ, µ(λ) ≥ 0,

∫
µ(λ) dλ = 1, (N.10)

then the inequalities Eqs. (N.9) hold as long as |x(λ)| ≤ 1, |y(λ)| ≤ 1, |z(λ)| ≤ 1, and |w(λ)| ≤ 1.
Suppose that we are given three functions x(λ), y(λ) and z(λ), satisfying |x(λ)| ≤ 1, |y(λ)| ≤ 1

nd |z(λ)| ≤ 1, and for which ⟨xy⟩ = 1/
√
2 and ⟨xz⟩ = −1/

√
2. Then inequality Eq. (N.9a) forces

⟨yz⟩ to be in the range ⟨yz⟩ ≤ 1 −
√
2.

Next assume that we have three unit vectors a, b, c, and three functions x(a, λ), y(b, λ),
nd z(c, λ). Then inequality Eq. (N.9a) rules out that there exist functions x(a, λ), y(b, λ), z(c, λ),
atisfying |x(a, λ)| ≤ 1, |y(b, λ)| ≤ 1, |z(c, λ)| ≤ 1 such that ⟨x(a)y(b)⟩ = a · b, ⟨x(a)z(c)⟩ = a · c,
nd ⟨y(b)z(c)⟩ = b · c. Indeed, if we take a = (1, 0, 0), b = (1, 1, 0)/

√
2, c = (−1, 1, 0)/

√
2, and use

⟨xy⟩ ± ⟨xz⟩| ≤ 1 ± ⟨yz⟩, we obtain
√
2 ≤ 1 which contradicts elementary arithmetic. In essence, a

imilar argument was used by Bell to prove his theorem (see Section 11.1).
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